ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqbrrdiv Unicode version

Theorem eqbrrdiv 4791
Description: Deduction from extensionality principle for relations. (Contributed by Rodolfo Medina, 10-Oct-2010.)
Hypotheses
Ref Expression
eqbrrdiv.1  |-  Rel  A
eqbrrdiv.2  |-  Rel  B
eqbrrdiv.3  |-  ( ph  ->  ( x A y  <-> 
x B y ) )
Assertion
Ref Expression
eqbrrdiv  |-  ( ph  ->  A  =  B )
Distinct variable groups:    x, y, A   
x, B, y    ph, x, y

Proof of Theorem eqbrrdiv
StepHypRef Expression
1 eqbrrdiv.1 . 2  |-  Rel  A
2 eqbrrdiv.2 . 2  |-  Rel  B
3 eqbrrdiv.3 . . 3  |-  ( ph  ->  ( x A y  <-> 
x B y ) )
4 df-br 4060 . . 3  |-  ( x A y  <->  <. x ,  y >.  e.  A
)
5 df-br 4060 . . 3  |-  ( x B y  <->  <. x ,  y >.  e.  B
)
63, 4, 53bitr3g 222 . 2  |-  ( ph  ->  ( <. x ,  y
>.  e.  A  <->  <. x ,  y >.  e.  B
) )
71, 2, 6eqrelrdv 4789 1  |-  ( ph  ->  A  =  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1373    e. wcel 2178   <.cop 3646   class class class wbr 4059   Rel wrel 4698
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-br 4060  df-opab 4122  df-xp 4699  df-rel 4700
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator