ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqrelrdv2 Unicode version

Theorem eqrelrdv2 4817
Description: A version of eqrelrdv 4814. (Contributed by Rodolfo Medina, 10-Oct-2010.)
Hypothesis
Ref Expression
eqrelrdv2.1  |-  ( ph  ->  ( <. x ,  y
>.  e.  A  <->  <. x ,  y >.  e.  B
) )
Assertion
Ref Expression
eqrelrdv2  |-  ( ( ( Rel  A  /\  Rel  B )  /\  ph )  ->  A  =  B )
Distinct variable groups:    x, y, A   
x, B, y    ph, x, y

Proof of Theorem eqrelrdv2
StepHypRef Expression
1 eqrelrdv2.1 . . . 4  |-  ( ph  ->  ( <. x ,  y
>.  e.  A  <->  <. x ,  y >.  e.  B
) )
21alrimivv 1921 . . 3  |-  ( ph  ->  A. x A. y
( <. x ,  y
>.  e.  A  <->  <. x ,  y >.  e.  B
) )
32adantl 277 . 2  |-  ( ( ( Rel  A  /\  Rel  B )  /\  ph )  ->  A. x A. y
( <. x ,  y
>.  e.  A  <->  <. x ,  y >.  e.  B
) )
4 eqrel 4807 . . 3  |-  ( ( Rel  A  /\  Rel  B )  ->  ( A  =  B  <->  A. x A. y
( <. x ,  y
>.  e.  A  <->  <. x ,  y >.  e.  B
) ) )
54adantr 276 . 2  |-  ( ( ( Rel  A  /\  Rel  B )  /\  ph )  ->  ( A  =  B  <->  A. x A. y
( <. x ,  y
>.  e.  A  <->  <. x ,  y >.  e.  B
) ) )
63, 5mpbird 167 1  |-  ( ( ( Rel  A  /\  Rel  B )  /\  ph )  ->  A  =  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105   A.wal 1393    = wceq 1395    e. wcel 2200   <.cop 3669   Rel wrel 4723
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-opab 4145  df-xp 4724  df-rel 4725
This theorem is referenced by:  xpiindim  4858  fliftcnv  5918  dmtpos  6400  ercnv  6699
  Copyright terms: Public domain W3C validator