ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqbrrdv Unicode version

Theorem eqbrrdv 4756
Description: Deduction from extensionality principle for relations. (Contributed by Mario Carneiro, 3-Jan-2017.)
Hypotheses
Ref Expression
eqbrrdv.1  |-  ( ph  ->  Rel  A )
eqbrrdv.2  |-  ( ph  ->  Rel  B )
eqbrrdv.3  |-  ( ph  ->  ( x A y  <-> 
x B y ) )
Assertion
Ref Expression
eqbrrdv  |-  ( ph  ->  A  =  B )
Distinct variable groups:    x, y, A   
x, B, y    ph, x, y

Proof of Theorem eqbrrdv
StepHypRef Expression
1 eqbrrdv.3 . . . 4  |-  ( ph  ->  ( x A y  <-> 
x B y ) )
2 df-br 4030 . . . 4  |-  ( x A y  <->  <. x ,  y >.  e.  A
)
3 df-br 4030 . . . 4  |-  ( x B y  <->  <. x ,  y >.  e.  B
)
41, 2, 33bitr3g 222 . . 3  |-  ( ph  ->  ( <. x ,  y
>.  e.  A  <->  <. x ,  y >.  e.  B
) )
54alrimivv 1886 . 2  |-  ( ph  ->  A. x A. y
( <. x ,  y
>.  e.  A  <->  <. x ,  y >.  e.  B
) )
6 eqbrrdv.1 . . 3  |-  ( ph  ->  Rel  A )
7 eqbrrdv.2 . . 3  |-  ( ph  ->  Rel  B )
8 eqrel 4748 . . 3  |-  ( ( Rel  A  /\  Rel  B )  ->  ( A  =  B  <->  A. x A. y
( <. x ,  y
>.  e.  A  <->  <. x ,  y >.  e.  B
) ) )
96, 7, 8syl2anc 411 . 2  |-  ( ph  ->  ( A  =  B  <->  A. x A. y (
<. x ,  y >.  e.  A  <->  <. x ,  y
>.  e.  B ) ) )
105, 9mpbird 167 1  |-  ( ph  ->  A  =  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105   A.wal 1362    = wceq 1364    e. wcel 2164   <.cop 3621   class class class wbr 4029   Rel wrel 4664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030  df-opab 4091  df-xp 4665  df-rel 4666
This theorem is referenced by:  eqbrrdva  4832
  Copyright terms: Public domain W3C validator