Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > exmidel | GIF version |
Description: Excluded middle is equivalent to decidability of membership for two arbitrary sets. (Contributed by Jim Kingdon, 18-Jun-2022.) |
Ref | Expression |
---|---|
exmidel | ⊢ (EXMID ↔ ∀𝑥∀𝑦DECID 𝑥 ∈ 𝑦) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exmidexmid 4152 | . . 3 ⊢ (EXMID → DECID 𝑥 ∈ 𝑦) | |
2 | 1 | alrimivv 1852 | . 2 ⊢ (EXMID → ∀𝑥∀𝑦DECID 𝑥 ∈ 𝑦) |
3 | 0ex 4087 | . . . 4 ⊢ ∅ ∈ V | |
4 | eleq1 2217 | . . . . . 6 ⊢ (𝑥 = ∅ → (𝑥 ∈ 𝑦 ↔ ∅ ∈ 𝑦)) | |
5 | 4 | dcbid 824 | . . . . 5 ⊢ (𝑥 = ∅ → (DECID 𝑥 ∈ 𝑦 ↔ DECID ∅ ∈ 𝑦)) |
6 | 5 | albidv 1801 | . . . 4 ⊢ (𝑥 = ∅ → (∀𝑦DECID 𝑥 ∈ 𝑦 ↔ ∀𝑦DECID ∅ ∈ 𝑦)) |
7 | 3, 6 | spcv 2803 | . . 3 ⊢ (∀𝑥∀𝑦DECID 𝑥 ∈ 𝑦 → ∀𝑦DECID ∅ ∈ 𝑦) |
8 | exmid0el 4160 | . . 3 ⊢ (EXMID ↔ ∀𝑦DECID ∅ ∈ 𝑦) | |
9 | 7, 8 | sylibr 133 | . 2 ⊢ (∀𝑥∀𝑦DECID 𝑥 ∈ 𝑦 → EXMID) |
10 | 2, 9 | impbii 125 | 1 ⊢ (EXMID ↔ ∀𝑥∀𝑦DECID 𝑥 ∈ 𝑦) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 DECID wdc 820 ∀wal 1330 = wceq 1332 ∈ wcel 2125 ∅c0 3390 EXMIDwem 4150 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-14 2128 ax-ext 2136 ax-sep 4078 ax-nul 4086 ax-pow 4130 |
This theorem depends on definitions: df-bi 116 df-dc 821 df-tru 1335 df-nf 1438 df-sb 1740 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-rab 2441 df-v 2711 df-dif 3100 df-in 3104 df-ss 3111 df-nul 3391 df-pw 3541 df-sn 3562 df-exmid 4151 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |