![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > exmidel | GIF version |
Description: Excluded middle is equivalent to decidability of membership for two arbitrary sets. (Contributed by Jim Kingdon, 18-Jun-2022.) |
Ref | Expression |
---|---|
exmidel | ⊢ (EXMID ↔ ∀𝑥∀𝑦DECID 𝑥 ∈ 𝑦) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exmidexmid 4225 | . . 3 ⊢ (EXMID → DECID 𝑥 ∈ 𝑦) | |
2 | 1 | alrimivv 1886 | . 2 ⊢ (EXMID → ∀𝑥∀𝑦DECID 𝑥 ∈ 𝑦) |
3 | 0ex 4156 | . . . 4 ⊢ ∅ ∈ V | |
4 | eleq1 2256 | . . . . . 6 ⊢ (𝑥 = ∅ → (𝑥 ∈ 𝑦 ↔ ∅ ∈ 𝑦)) | |
5 | 4 | dcbid 839 | . . . . 5 ⊢ (𝑥 = ∅ → (DECID 𝑥 ∈ 𝑦 ↔ DECID ∅ ∈ 𝑦)) |
6 | 5 | albidv 1835 | . . . 4 ⊢ (𝑥 = ∅ → (∀𝑦DECID 𝑥 ∈ 𝑦 ↔ ∀𝑦DECID ∅ ∈ 𝑦)) |
7 | 3, 6 | spcv 2854 | . . 3 ⊢ (∀𝑥∀𝑦DECID 𝑥 ∈ 𝑦 → ∀𝑦DECID ∅ ∈ 𝑦) |
8 | exmid0el 4233 | . . 3 ⊢ (EXMID ↔ ∀𝑦DECID ∅ ∈ 𝑦) | |
9 | 7, 8 | sylibr 134 | . 2 ⊢ (∀𝑥∀𝑦DECID 𝑥 ∈ 𝑦 → EXMID) |
10 | 2, 9 | impbii 126 | 1 ⊢ (EXMID ↔ ∀𝑥∀𝑦DECID 𝑥 ∈ 𝑦) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 DECID wdc 835 ∀wal 1362 = wceq 1364 ∈ wcel 2164 ∅c0 3446 EXMIDwem 4223 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-nul 4155 ax-pow 4203 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-rab 2481 df-v 2762 df-dif 3155 df-in 3159 df-ss 3166 df-nul 3447 df-pw 3603 df-sn 3624 df-exmid 4224 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |