ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exmidel GIF version

Theorem exmidel 4257
Description: Excluded middle is equivalent to decidability of membership for two arbitrary sets. (Contributed by Jim Kingdon, 18-Jun-2022.)
Assertion
Ref Expression
exmidel (EXMID ↔ ∀𝑥𝑦DECID 𝑥𝑦)
Distinct variable group:   𝑥,𝑦

Proof of Theorem exmidel
StepHypRef Expression
1 exmidexmid 4248 . . 3 (EXMIDDECID 𝑥𝑦)
21alrimivv 1899 . 2 (EXMID → ∀𝑥𝑦DECID 𝑥𝑦)
3 0ex 4179 . . . 4 ∅ ∈ V
4 eleq1 2269 . . . . . 6 (𝑥 = ∅ → (𝑥𝑦 ↔ ∅ ∈ 𝑦))
54dcbid 840 . . . . 5 (𝑥 = ∅ → (DECID 𝑥𝑦DECID ∅ ∈ 𝑦))
65albidv 1848 . . . 4 (𝑥 = ∅ → (∀𝑦DECID 𝑥𝑦 ↔ ∀𝑦DECID ∅ ∈ 𝑦))
73, 6spcv 2871 . . 3 (∀𝑥𝑦DECID 𝑥𝑦 → ∀𝑦DECID ∅ ∈ 𝑦)
8 exmid0el 4256 . . 3 (EXMID ↔ ∀𝑦DECID ∅ ∈ 𝑦)
97, 8sylibr 134 . 2 (∀𝑥𝑦DECID 𝑥𝑦EXMID)
102, 9impbii 126 1 (EXMID ↔ ∀𝑥𝑦DECID 𝑥𝑦)
Colors of variables: wff set class
Syntax hints:  wb 105  DECID wdc 836  wal 1371   = wceq 1373  wcel 2177  c0 3464  EXMIDwem 4246
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-nul 4178  ax-pow 4226
This theorem depends on definitions:  df-bi 117  df-dc 837  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-rab 2494  df-v 2775  df-dif 3172  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3623  df-sn 3644  df-exmid 4247
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator