Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > exmidel | GIF version |
Description: Excluded middle is equivalent to decidability of membership for two arbitrary sets. (Contributed by Jim Kingdon, 18-Jun-2022.) |
Ref | Expression |
---|---|
exmidel | ⊢ (EXMID ↔ ∀𝑥∀𝑦DECID 𝑥 ∈ 𝑦) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exmidexmid 4182 | . . 3 ⊢ (EXMID → DECID 𝑥 ∈ 𝑦) | |
2 | 1 | alrimivv 1868 | . 2 ⊢ (EXMID → ∀𝑥∀𝑦DECID 𝑥 ∈ 𝑦) |
3 | 0ex 4116 | . . . 4 ⊢ ∅ ∈ V | |
4 | eleq1 2233 | . . . . . 6 ⊢ (𝑥 = ∅ → (𝑥 ∈ 𝑦 ↔ ∅ ∈ 𝑦)) | |
5 | 4 | dcbid 833 | . . . . 5 ⊢ (𝑥 = ∅ → (DECID 𝑥 ∈ 𝑦 ↔ DECID ∅ ∈ 𝑦)) |
6 | 5 | albidv 1817 | . . . 4 ⊢ (𝑥 = ∅ → (∀𝑦DECID 𝑥 ∈ 𝑦 ↔ ∀𝑦DECID ∅ ∈ 𝑦)) |
7 | 3, 6 | spcv 2824 | . . 3 ⊢ (∀𝑥∀𝑦DECID 𝑥 ∈ 𝑦 → ∀𝑦DECID ∅ ∈ 𝑦) |
8 | exmid0el 4190 | . . 3 ⊢ (EXMID ↔ ∀𝑦DECID ∅ ∈ 𝑦) | |
9 | 7, 8 | sylibr 133 | . 2 ⊢ (∀𝑥∀𝑦DECID 𝑥 ∈ 𝑦 → EXMID) |
10 | 2, 9 | impbii 125 | 1 ⊢ (EXMID ↔ ∀𝑥∀𝑦DECID 𝑥 ∈ 𝑦) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 DECID wdc 829 ∀wal 1346 = wceq 1348 ∈ wcel 2141 ∅c0 3414 EXMIDwem 4180 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-nul 4115 ax-pow 4160 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-rab 2457 df-v 2732 df-dif 3123 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-exmid 4181 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |