| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > exmidel | GIF version | ||
| Description: Excluded middle is equivalent to decidability of membership for two arbitrary sets. (Contributed by Jim Kingdon, 18-Jun-2022.) |
| Ref | Expression |
|---|---|
| exmidel | ⊢ (EXMID ↔ ∀𝑥∀𝑦DECID 𝑥 ∈ 𝑦) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exmidexmid 4239 | . . 3 ⊢ (EXMID → DECID 𝑥 ∈ 𝑦) | |
| 2 | 1 | alrimivv 1897 | . 2 ⊢ (EXMID → ∀𝑥∀𝑦DECID 𝑥 ∈ 𝑦) |
| 3 | 0ex 4170 | . . . 4 ⊢ ∅ ∈ V | |
| 4 | eleq1 2267 | . . . . . 6 ⊢ (𝑥 = ∅ → (𝑥 ∈ 𝑦 ↔ ∅ ∈ 𝑦)) | |
| 5 | 4 | dcbid 839 | . . . . 5 ⊢ (𝑥 = ∅ → (DECID 𝑥 ∈ 𝑦 ↔ DECID ∅ ∈ 𝑦)) |
| 6 | 5 | albidv 1846 | . . . 4 ⊢ (𝑥 = ∅ → (∀𝑦DECID 𝑥 ∈ 𝑦 ↔ ∀𝑦DECID ∅ ∈ 𝑦)) |
| 7 | 3, 6 | spcv 2866 | . . 3 ⊢ (∀𝑥∀𝑦DECID 𝑥 ∈ 𝑦 → ∀𝑦DECID ∅ ∈ 𝑦) |
| 8 | exmid0el 4247 | . . 3 ⊢ (EXMID ↔ ∀𝑦DECID ∅ ∈ 𝑦) | |
| 9 | 7, 8 | sylibr 134 | . 2 ⊢ (∀𝑥∀𝑦DECID 𝑥 ∈ 𝑦 → EXMID) |
| 10 | 2, 9 | impbii 126 | 1 ⊢ (EXMID ↔ ∀𝑥∀𝑦DECID 𝑥 ∈ 𝑦) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 DECID wdc 835 ∀wal 1370 = wceq 1372 ∈ wcel 2175 ∅c0 3459 EXMIDwem 4237 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-nul 4169 ax-pow 4217 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-rab 2492 df-v 2773 df-dif 3167 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-exmid 4238 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |