| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > exmidel | GIF version | ||
| Description: Excluded middle is equivalent to decidability of membership for two arbitrary sets. (Contributed by Jim Kingdon, 18-Jun-2022.) |
| Ref | Expression |
|---|---|
| exmidel | ⊢ (EXMID ↔ ∀𝑥∀𝑦DECID 𝑥 ∈ 𝑦) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exmidexmid 4279 | . . 3 ⊢ (EXMID → DECID 𝑥 ∈ 𝑦) | |
| 2 | 1 | alrimivv 1921 | . 2 ⊢ (EXMID → ∀𝑥∀𝑦DECID 𝑥 ∈ 𝑦) |
| 3 | 0ex 4210 | . . . 4 ⊢ ∅ ∈ V | |
| 4 | eleq1 2292 | . . . . . 6 ⊢ (𝑥 = ∅ → (𝑥 ∈ 𝑦 ↔ ∅ ∈ 𝑦)) | |
| 5 | 4 | dcbid 843 | . . . . 5 ⊢ (𝑥 = ∅ → (DECID 𝑥 ∈ 𝑦 ↔ DECID ∅ ∈ 𝑦)) |
| 6 | 5 | albidv 1870 | . . . 4 ⊢ (𝑥 = ∅ → (∀𝑦DECID 𝑥 ∈ 𝑦 ↔ ∀𝑦DECID ∅ ∈ 𝑦)) |
| 7 | 3, 6 | spcv 2897 | . . 3 ⊢ (∀𝑥∀𝑦DECID 𝑥 ∈ 𝑦 → ∀𝑦DECID ∅ ∈ 𝑦) |
| 8 | exmid0el 4287 | . . 3 ⊢ (EXMID ↔ ∀𝑦DECID ∅ ∈ 𝑦) | |
| 9 | 7, 8 | sylibr 134 | . 2 ⊢ (∀𝑥∀𝑦DECID 𝑥 ∈ 𝑦 → EXMID) |
| 10 | 2, 9 | impbii 126 | 1 ⊢ (EXMID ↔ ∀𝑥∀𝑦DECID 𝑥 ∈ 𝑦) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 DECID wdc 839 ∀wal 1393 = wceq 1395 ∈ wcel 2200 ∅c0 3491 EXMIDwem 4277 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-nul 4209 ax-pow 4257 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rab 2517 df-v 2801 df-dif 3199 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-exmid 4278 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |