| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > fimacnvdisj | GIF version | ||
| Description: The preimage of a class disjoint with a mapping's codomain is empty. (Contributed by FL, 24-Jan-2007.) | 
| Ref | Expression | 
|---|---|
| fimacnvdisj | ⊢ ((𝐹:𝐴⟶𝐵 ∧ (𝐵 ∩ 𝐶) = ∅) → (◡𝐹 “ 𝐶) = ∅) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-rn 4674 | . . . 4 ⊢ ran 𝐹 = dom ◡𝐹 | |
| 2 | frn 5416 | . . . . 5 ⊢ (𝐹:𝐴⟶𝐵 → ran 𝐹 ⊆ 𝐵) | |
| 3 | 2 | adantr 276 | . . . 4 ⊢ ((𝐹:𝐴⟶𝐵 ∧ (𝐵 ∩ 𝐶) = ∅) → ran 𝐹 ⊆ 𝐵) | 
| 4 | 1, 3 | eqsstrrid 3230 | . . 3 ⊢ ((𝐹:𝐴⟶𝐵 ∧ (𝐵 ∩ 𝐶) = ∅) → dom ◡𝐹 ⊆ 𝐵) | 
| 5 | ssdisj 3507 | . . 3 ⊢ ((dom ◡𝐹 ⊆ 𝐵 ∧ (𝐵 ∩ 𝐶) = ∅) → (dom ◡𝐹 ∩ 𝐶) = ∅) | |
| 6 | 4, 5 | sylancom 420 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ (𝐵 ∩ 𝐶) = ∅) → (dom ◡𝐹 ∩ 𝐶) = ∅) | 
| 7 | imadisj 5031 | . 2 ⊢ ((◡𝐹 “ 𝐶) = ∅ ↔ (dom ◡𝐹 ∩ 𝐶) = ∅) | |
| 8 | 6, 7 | sylibr 134 | 1 ⊢ ((𝐹:𝐴⟶𝐵 ∧ (𝐵 ∩ 𝐶) = ∅) → (◡𝐹 “ 𝐶) = ∅) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∩ cin 3156 ⊆ wss 3157 ∅c0 3450 ◡ccnv 4662 dom cdm 4663 ran crn 4664 “ cima 4666 ⟶wf 5254 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-br 4034 df-opab 4095 df-xp 4669 df-cnv 4671 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-f 5262 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |