ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fimacnvdisj GIF version

Theorem fimacnvdisj 5347
Description: The preimage of a class disjoint with a mapping's codomain is empty. (Contributed by FL, 24-Jan-2007.)
Assertion
Ref Expression
fimacnvdisj ((𝐹:𝐴𝐵 ∧ (𝐵𝐶) = ∅) → (𝐹𝐶) = ∅)

Proof of Theorem fimacnvdisj
StepHypRef Expression
1 df-rn 4590 . . . 4 ran 𝐹 = dom 𝐹
2 frn 5321 . . . . 5 (𝐹:𝐴𝐵 → ran 𝐹𝐵)
32adantr 274 . . . 4 ((𝐹:𝐴𝐵 ∧ (𝐵𝐶) = ∅) → ran 𝐹𝐵)
41, 3eqsstrrid 3171 . . 3 ((𝐹:𝐴𝐵 ∧ (𝐵𝐶) = ∅) → dom 𝐹𝐵)
5 ssdisj 3446 . . 3 ((dom 𝐹𝐵 ∧ (𝐵𝐶) = ∅) → (dom 𝐹𝐶) = ∅)
64, 5sylancom 417 . 2 ((𝐹:𝐴𝐵 ∧ (𝐵𝐶) = ∅) → (dom 𝐹𝐶) = ∅)
7 imadisj 4941 . 2 ((𝐹𝐶) = ∅ ↔ (dom 𝐹𝐶) = ∅)
86, 7sylibr 133 1 ((𝐹:𝐴𝐵 ∧ (𝐵𝐶) = ∅) → (𝐹𝐶) = ∅)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1332  cin 3097  wss 3098  c0 3390  ccnv 4578  dom cdm 4579  ran crn 4580  cima 4582  wf 5159
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-14 2128  ax-ext 2136  ax-sep 4078  ax-pow 4130  ax-pr 4164
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1740  df-eu 2006  df-mo 2007  df-clab 2141  df-cleq 2147  df-clel 2150  df-nfc 2285  df-ral 2437  df-rex 2438  df-v 2711  df-dif 3100  df-un 3102  df-in 3104  df-ss 3111  df-nul 3391  df-pw 3541  df-sn 3562  df-pr 3563  df-op 3565  df-br 3962  df-opab 4022  df-xp 4585  df-cnv 4587  df-dm 4589  df-rn 4590  df-res 4591  df-ima 4592  df-f 5167
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator