Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fimacnvdisj | GIF version |
Description: The preimage of a class disjoint with a mapping's codomain is empty. (Contributed by FL, 24-Jan-2007.) |
Ref | Expression |
---|---|
fimacnvdisj | ⊢ ((𝐹:𝐴⟶𝐵 ∧ (𝐵 ∩ 𝐶) = ∅) → (◡𝐹 “ 𝐶) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rn 4622 | . . . 4 ⊢ ran 𝐹 = dom ◡𝐹 | |
2 | frn 5356 | . . . . 5 ⊢ (𝐹:𝐴⟶𝐵 → ran 𝐹 ⊆ 𝐵) | |
3 | 2 | adantr 274 | . . . 4 ⊢ ((𝐹:𝐴⟶𝐵 ∧ (𝐵 ∩ 𝐶) = ∅) → ran 𝐹 ⊆ 𝐵) |
4 | 1, 3 | eqsstrrid 3194 | . . 3 ⊢ ((𝐹:𝐴⟶𝐵 ∧ (𝐵 ∩ 𝐶) = ∅) → dom ◡𝐹 ⊆ 𝐵) |
5 | ssdisj 3471 | . . 3 ⊢ ((dom ◡𝐹 ⊆ 𝐵 ∧ (𝐵 ∩ 𝐶) = ∅) → (dom ◡𝐹 ∩ 𝐶) = ∅) | |
6 | 4, 5 | sylancom 418 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ (𝐵 ∩ 𝐶) = ∅) → (dom ◡𝐹 ∩ 𝐶) = ∅) |
7 | imadisj 4973 | . 2 ⊢ ((◡𝐹 “ 𝐶) = ∅ ↔ (dom ◡𝐹 ∩ 𝐶) = ∅) | |
8 | 6, 7 | sylibr 133 | 1 ⊢ ((𝐹:𝐴⟶𝐵 ∧ (𝐵 ∩ 𝐶) = ∅) → (◡𝐹 “ 𝐶) = ∅) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1348 ∩ cin 3120 ⊆ wss 3121 ∅c0 3414 ◡ccnv 4610 dom cdm 4611 ran crn 4612 “ cima 4614 ⟶wf 5194 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-br 3990 df-opab 4051 df-xp 4617 df-cnv 4619 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-f 5202 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |