| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fimacnvdisj | GIF version | ||
| Description: The preimage of a class disjoint with a mapping's codomain is empty. (Contributed by FL, 24-Jan-2007.) |
| Ref | Expression |
|---|---|
| fimacnvdisj | ⊢ ((𝐹:𝐴⟶𝐵 ∧ (𝐵 ∩ 𝐶) = ∅) → (◡𝐹 “ 𝐶) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rn 4686 | . . . 4 ⊢ ran 𝐹 = dom ◡𝐹 | |
| 2 | frn 5434 | . . . . 5 ⊢ (𝐹:𝐴⟶𝐵 → ran 𝐹 ⊆ 𝐵) | |
| 3 | 2 | adantr 276 | . . . 4 ⊢ ((𝐹:𝐴⟶𝐵 ∧ (𝐵 ∩ 𝐶) = ∅) → ran 𝐹 ⊆ 𝐵) |
| 4 | 1, 3 | eqsstrrid 3240 | . . 3 ⊢ ((𝐹:𝐴⟶𝐵 ∧ (𝐵 ∩ 𝐶) = ∅) → dom ◡𝐹 ⊆ 𝐵) |
| 5 | ssdisj 3517 | . . 3 ⊢ ((dom ◡𝐹 ⊆ 𝐵 ∧ (𝐵 ∩ 𝐶) = ∅) → (dom ◡𝐹 ∩ 𝐶) = ∅) | |
| 6 | 4, 5 | sylancom 420 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ (𝐵 ∩ 𝐶) = ∅) → (dom ◡𝐹 ∩ 𝐶) = ∅) |
| 7 | imadisj 5044 | . 2 ⊢ ((◡𝐹 “ 𝐶) = ∅ ↔ (dom ◡𝐹 ∩ 𝐶) = ∅) | |
| 8 | 6, 7 | sylibr 134 | 1 ⊢ ((𝐹:𝐴⟶𝐵 ∧ (𝐵 ∩ 𝐶) = ∅) → (◡𝐹 “ 𝐶) = ∅) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∩ cin 3165 ⊆ wss 3166 ∅c0 3460 ◡ccnv 4674 dom cdm 4675 ran crn 4676 “ cima 4678 ⟶wf 5267 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-br 4045 df-opab 4106 df-xp 4681 df-cnv 4683 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-f 5275 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |