ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnresin1 Unicode version

Theorem fnresin1 5322
Description: Restriction of a function's domain with an intersection. (Contributed by NM, 9-Aug-1994.)
Assertion
Ref Expression
fnresin1  |-  ( F  Fn  A  ->  ( F  |`  ( A  i^i  B ) )  Fn  ( A  i^i  B ) )

Proof of Theorem fnresin1
StepHypRef Expression
1 inss1 3353 . 2  |-  ( A  i^i  B )  C_  A
2 fnssres 5321 . 2  |-  ( ( F  Fn  A  /\  ( A  i^i  B ) 
C_  A )  -> 
( F  |`  ( A  i^i  B ) )  Fn  ( A  i^i  B ) )
31, 2mpan2 425 1  |-  ( F  Fn  A  ->  ( F  |`  ( A  i^i  B ) )  Fn  ( A  i^i  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    i^i cin 3126    C_ wss 3127    |` cres 4622    Fn wfn 5203
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-rex 2459  df-v 2737  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-br 3999  df-opab 4060  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-res 4632  df-fun 5210  df-fn 5211
This theorem is referenced by:  frecfnom  6392
  Copyright terms: Public domain W3C validator