ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnresin1 Unicode version

Theorem fnresin1 5438
Description: Restriction of a function's domain with an intersection. (Contributed by NM, 9-Aug-1994.)
Assertion
Ref Expression
fnresin1  |-  ( F  Fn  A  ->  ( F  |`  ( A  i^i  B ) )  Fn  ( A  i^i  B ) )

Proof of Theorem fnresin1
StepHypRef Expression
1 inss1 3424 . 2  |-  ( A  i^i  B )  C_  A
2 fnssres 5436 . 2  |-  ( ( F  Fn  A  /\  ( A  i^i  B ) 
C_  A )  -> 
( F  |`  ( A  i^i  B ) )  Fn  ( A  i^i  B ) )
31, 2mpan2 425 1  |-  ( F  Fn  A  ->  ( F  |`  ( A  i^i  B ) )  Fn  ( A  i^i  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    i^i cin 3196    C_ wss 3197    |` cres 4721    Fn wfn 5313
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4084  df-opab 4146  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-res 4731  df-fun 5320  df-fn 5321
This theorem is referenced by:  frecfnom  6547
  Copyright terms: Public domain W3C validator