ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnssres Unicode version

Theorem fnssres 5408
Description: Restriction of a function with a subclass of its domain. (Contributed by NM, 2-Aug-1994.)
Assertion
Ref Expression
fnssres  |-  ( ( F  Fn  A  /\  B  C_  A )  -> 
( F  |`  B )  Fn  B )

Proof of Theorem fnssres
StepHypRef Expression
1 fnssresb 5407 . 2  |-  ( F  Fn  A  ->  (
( F  |`  B )  Fn  B  <->  B  C_  A
) )
21biimpar 297 1  |-  ( ( F  Fn  A  /\  B  C_  A )  -> 
( F  |`  B )  Fn  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    C_ wss 3174    |` cres 4695    Fn wfn 5285
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-br 4060  df-opab 4122  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-res 4705  df-fun 5292  df-fn 5293
This theorem is referenced by:  fnssresd  5409  fnresin1  5410  fnresin2  5411  fssres  5473  fvreseq  5706  fnreseql  5713  ffvresb  5766  fnressn  5793  ofres  6196  tfrlem1  6417  frecrdg  6517  resixp  6843  resfnfinfinss  7067  suplocexprlemell  7861  seq3feq2  10658  seqf1oglem2  10702  reeff1  12126  rngmgpf  13814  mgpf  13888  upxp  14859  uptx  14861  cnmpt1st  14875  cnmpt2nd  14876  ioocosf1o  15441  mpodvdsmulf1o  15577
  Copyright terms: Public domain W3C validator