ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnssres Unicode version

Theorem fnssres 5436
Description: Restriction of a function with a subclass of its domain. (Contributed by NM, 2-Aug-1994.)
Assertion
Ref Expression
fnssres  |-  ( ( F  Fn  A  /\  B  C_  A )  -> 
( F  |`  B )  Fn  B )

Proof of Theorem fnssres
StepHypRef Expression
1 fnssresb 5435 . 2  |-  ( F  Fn  A  ->  (
( F  |`  B )  Fn  B  <->  B  C_  A
) )
21biimpar 297 1  |-  ( ( F  Fn  A  /\  B  C_  A )  -> 
( F  |`  B )  Fn  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    C_ wss 3197    |` cres 4721    Fn wfn 5313
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4084  df-opab 4146  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-res 4731  df-fun 5320  df-fn 5321
This theorem is referenced by:  fnssresd  5437  fnresin1  5438  fnresin2  5439  fssres  5501  fvreseq  5738  fnreseql  5745  ffvresb  5798  fnressn  5825  ofres  6233  tfrlem1  6454  frecrdg  6554  resixp  6880  resfnfinfinss  7106  suplocexprlemell  7900  seq3feq2  10698  seqf1oglem2  10742  reeff1  12211  rngmgpf  13900  mgpf  13974  upxp  14946  uptx  14948  cnmpt1st  14962  cnmpt2nd  14963  ioocosf1o  15528  mpodvdsmulf1o  15664
  Copyright terms: Public domain W3C validator