ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnssres Unicode version

Theorem fnssres 5390
Description: Restriction of a function with a subclass of its domain. (Contributed by NM, 2-Aug-1994.)
Assertion
Ref Expression
fnssres  |-  ( ( F  Fn  A  /\  B  C_  A )  -> 
( F  |`  B )  Fn  B )

Proof of Theorem fnssres
StepHypRef Expression
1 fnssresb 5389 . 2  |-  ( F  Fn  A  ->  (
( F  |`  B )  Fn  B  <->  B  C_  A
) )
21biimpar 297 1  |-  ( ( F  Fn  A  /\  B  C_  A )  -> 
( F  |`  B )  Fn  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    C_ wss 3166    |` cres 4678    Fn wfn 5267
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-br 4046  df-opab 4107  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-res 4688  df-fun 5274  df-fn 5275
This theorem is referenced by:  fnssresd  5391  fnresin1  5392  fnresin2  5393  fssres  5453  fvreseq  5685  fnreseql  5692  ffvresb  5745  fnressn  5772  ofres  6175  tfrlem1  6396  frecrdg  6496  resixp  6822  resfnfinfinss  7043  suplocexprlemell  7828  seq3feq2  10623  seqf1oglem2  10667  reeff1  12044  rngmgpf  13732  mgpf  13806  upxp  14777  uptx  14779  cnmpt1st  14793  cnmpt2nd  14794  ioocosf1o  15359  mpodvdsmulf1o  15495
  Copyright terms: Public domain W3C validator