| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fnssres | Unicode version | ||
| Description: Restriction of a function with a subclass of its domain. (Contributed by NM, 2-Aug-1994.) |
| Ref | Expression |
|---|---|
| fnssres |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnssresb 5370 |
. 2
| |
| 2 | 1 | biimpar 297 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-br 4034 df-opab 4095 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-res 4675 df-fun 5260 df-fn 5261 |
| This theorem is referenced by: fnresin1 5372 fnresin2 5373 fssres 5433 fvreseq 5665 fnreseql 5672 ffvresb 5725 fnressn 5748 ofres 6150 tfrlem1 6366 frecrdg 6466 resixp 6792 resfnfinfinss 7005 suplocexprlemell 7780 seq3feq2 10568 seqf1oglem2 10612 reeff1 11865 rngmgpf 13493 mgpf 13567 upxp 14508 uptx 14510 cnmpt1st 14524 cnmpt2nd 14525 ioocosf1o 15090 mpodvdsmulf1o 15226 |
| Copyright terms: Public domain | W3C validator |