| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fnssres | Unicode version | ||
| Description: Restriction of a function with a subclass of its domain. (Contributed by NM, 2-Aug-1994.) |
| Ref | Expression |
|---|---|
| fnssres |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnssresb 5389 |
. 2
| |
| 2 | 1 | biimpar 297 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-br 4046 df-opab 4107 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-res 4688 df-fun 5274 df-fn 5275 |
| This theorem is referenced by: fnssresd 5391 fnresin1 5392 fnresin2 5393 fssres 5453 fvreseq 5685 fnreseql 5692 ffvresb 5745 fnressn 5772 ofres 6175 tfrlem1 6396 frecrdg 6496 resixp 6822 resfnfinfinss 7043 suplocexprlemell 7828 seq3feq2 10623 seqf1oglem2 10667 reeff1 12044 rngmgpf 13732 mgpf 13806 upxp 14777 uptx 14779 cnmpt1st 14793 cnmpt2nd 14794 ioocosf1o 15359 mpodvdsmulf1o 15495 |
| Copyright terms: Public domain | W3C validator |