ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnssres Unicode version

Theorem fnssres 5301
Description: Restriction of a function with a subclass of its domain. (Contributed by NM, 2-Aug-1994.)
Assertion
Ref Expression
fnssres  |-  ( ( F  Fn  A  /\  B  C_  A )  -> 
( F  |`  B )  Fn  B )

Proof of Theorem fnssres
StepHypRef Expression
1 fnssresb 5300 . 2  |-  ( F  Fn  A  ->  (
( F  |`  B )  Fn  B  <->  B  C_  A
) )
21biimpar 295 1  |-  ( ( F  Fn  A  /\  B  C_  A )  -> 
( F  |`  B )  Fn  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    C_ wss 3116    |` cres 4606    Fn wfn 5183
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-res 4616  df-fun 5190  df-fn 5191
This theorem is referenced by:  fnresin1  5302  fnresin2  5303  fssres  5363  fvreseq  5589  fnreseql  5595  ffvresb  5648  fnressn  5671  ofres  6064  tfrlem1  6276  frecrdg  6376  resixp  6699  resfnfinfinss  6905  suplocexprlemell  7654  seq3feq2  10405  reeff1  11641  upxp  12912  uptx  12914  cnmpt1st  12928  cnmpt2nd  12929  ioocosf1o  13415
  Copyright terms: Public domain W3C validator