| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fnssres | Unicode version | ||
| Description: Restriction of a function with a subclass of its domain. (Contributed by NM, 2-Aug-1994.) |
| Ref | Expression |
|---|---|
| fnssres |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnssresb 5388 |
. 2
| |
| 2 | 1 | biimpar 297 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-br 4045 df-opab 4106 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-res 4687 df-fun 5273 df-fn 5274 |
| This theorem is referenced by: fnresin1 5390 fnresin2 5391 fssres 5451 fvreseq 5683 fnreseql 5690 ffvresb 5743 fnressn 5770 ofres 6173 tfrlem1 6394 frecrdg 6494 resixp 6820 resfnfinfinss 7041 suplocexprlemell 7826 seq3feq2 10621 seqf1oglem2 10665 reeff1 12011 rngmgpf 13699 mgpf 13773 upxp 14744 uptx 14746 cnmpt1st 14760 cnmpt2nd 14761 ioocosf1o 15326 mpodvdsmulf1o 15462 |
| Copyright terms: Public domain | W3C validator |