ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnresin2 Unicode version

Theorem fnresin2 5303
Description: Restriction of a function's domain with an intersection. (Contributed by NM, 9-Aug-1994.)
Assertion
Ref Expression
fnresin2  |-  ( F  Fn  A  ->  ( F  |`  ( B  i^i  A ) )  Fn  ( B  i^i  A ) )

Proof of Theorem fnresin2
StepHypRef Expression
1 inss2 3343 . 2  |-  ( B  i^i  A )  C_  A
2 fnssres 5301 . 2  |-  ( ( F  Fn  A  /\  ( B  i^i  A ) 
C_  A )  -> 
( F  |`  ( B  i^i  A ) )  Fn  ( B  i^i  A ) )
31, 2mpan2 422 1  |-  ( F  Fn  A  ->  ( F  |`  ( B  i^i  A ) )  Fn  ( B  i^i  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    i^i cin 3115    C_ wss 3116    |` cres 4606    Fn wfn 5183
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-res 4616  df-fun 5190  df-fn 5191
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator