ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qnnen Unicode version

Theorem qnnen 11839
Description: The rational numbers are countably infinite. Corollary 8.1.23 of [AczelRathjen], p. 75. This is Metamath 100 proof #3. (Contributed by Jim Kingdon, 11-Aug-2023.)
Assertion
Ref Expression
qnnen  |-  QQ  ~~  NN

Proof of Theorem qnnen
Dummy variables  f  g  p  q are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 qdceq 9964 . . 3  |-  ( ( p  e.  QQ  /\  q  e.  QQ )  -> DECID  p  =  q )
21rgen2a 2461 . 2  |-  A. p  e.  QQ  A. q  e.  QQ DECID  p  =  q
3 znnen 11806 . . . . . . . 8  |-  ZZ  ~~  NN
4 nnex 8683 . . . . . . . . 9  |-  NN  e.  _V
54enref 6625 . . . . . . . 8  |-  NN  ~~  NN
6 xpen 6705 . . . . . . . 8  |-  ( ( ZZ  ~~  NN  /\  NN  ~~  NN )  -> 
( ZZ  X.  NN )  ~~  ( NN  X.  NN ) )
73, 5, 6mp2an 420 . . . . . . 7  |-  ( ZZ 
X.  NN )  ~~  ( NN  X.  NN )
8 xpnnen 11802 . . . . . . 7  |-  ( NN 
X.  NN )  ~~  NN
97, 8entri 6646 . . . . . 6  |-  ( ZZ 
X.  NN )  ~~  NN
10 nnenom 10147 . . . . . 6  |-  NN  ~~  om
119, 10entri 6646 . . . . 5  |-  ( ZZ 
X.  NN )  ~~  om
1211ensymi 6642 . . . 4  |-  om  ~~  ( ZZ  X.  NN )
13 bren 6607 . . . 4  |-  ( om 
~~  ( ZZ  X.  NN )  <->  E. g  g : om -1-1-onto-> ( ZZ  X.  NN ) )
1412, 13mpbi 144 . . 3  |-  E. g 
g : om -1-1-onto-> ( ZZ  X.  NN )
15 f1ofo 5340 . . . . 5  |-  ( g : om -1-1-onto-> ( ZZ  X.  NN )  ->  g : om -onto->
( ZZ  X.  NN ) )
16 divfnzn 9362 . . . . . . . . 9  |-  (  /  |`  ( ZZ  X.  NN ) )  Fn  ( ZZ  X.  NN )
17 fnfun 5188 . . . . . . . . 9  |-  ( (  /  |`  ( ZZ  X.  NN ) )  Fn  ( ZZ  X.  NN )  ->  Fun  (  /  |`  ( ZZ  X.  NN ) ) )
1816, 17ax-mp 5 . . . . . . . 8  |-  Fun  (  /  |`  ( ZZ  X.  NN ) )
19 fndm 5190 . . . . . . . . 9  |-  ( (  /  |`  ( ZZ  X.  NN ) )  Fn  ( ZZ  X.  NN )  ->  dom  (  /  |`  ( ZZ  X.  NN ) )  =  ( ZZ  X.  NN ) )
20 eqimss2 3120 . . . . . . . . 9  |-  ( dom  (  /  |`  ( ZZ  X.  NN ) )  =  ( ZZ  X.  NN )  ->  ( ZZ 
X.  NN )  C_  dom  (  /  |`  ( ZZ  X.  NN ) ) )
2116, 19, 20mp2b 8 . . . . . . . 8  |-  ( ZZ 
X.  NN )  C_  dom  (  /  |`  ( ZZ  X.  NN ) )
22 fores 5322 . . . . . . . 8  |-  ( ( Fun  (  /  |`  ( ZZ  X.  NN ) )  /\  ( ZZ  X.  NN )  C_  dom  (  /  |`  ( ZZ  X.  NN ) ) )  -> 
( (  /  |`  ( ZZ  X.  NN ) )  |`  ( ZZ  X.  NN ) ) : ( ZZ  X.  NN )
-onto-> ( (  /  |`  ( ZZ  X.  NN ) )
" ( ZZ  X.  NN ) ) )
2318, 21, 22mp2an 420 . . . . . . 7  |-  ( (  /  |`  ( ZZ  X.  NN ) )  |`  ( ZZ  X.  NN ) ) : ( ZZ  X.  NN )
-onto-> ( (  /  |`  ( ZZ  X.  NN ) )
" ( ZZ  X.  NN ) )
24 resima 4820 . . . . . . . . 9  |-  ( (  /  |`  ( ZZ  X.  NN ) ) "
( ZZ  X.  NN ) )  =  (  /  " ( ZZ 
X.  NN ) )
25 df-q 9361 . . . . . . . . 9  |-  QQ  =  (  /  " ( ZZ 
X.  NN ) )
2624, 25eqtr4i 2139 . . . . . . . 8  |-  ( (  /  |`  ( ZZ  X.  NN ) ) "
( ZZ  X.  NN ) )  =  QQ
27 foeq3 5311 . . . . . . . 8  |-  ( ( (  /  |`  ( ZZ  X.  NN ) )
" ( ZZ  X.  NN ) )  =  QQ 
->  ( ( (  /  |`  ( ZZ  X.  NN ) )  |`  ( ZZ  X.  NN ) ) : ( ZZ  X.  NN ) -onto-> ( (  /  |`  ( ZZ  X.  NN ) ) " ( ZZ  X.  NN ) )  <-> 
( (  /  |`  ( ZZ  X.  NN ) )  |`  ( ZZ  X.  NN ) ) : ( ZZ  X.  NN )
-onto-> QQ ) )
2826, 27ax-mp 5 . . . . . . 7  |-  ( ( (  /  |`  ( ZZ  X.  NN ) )  |`  ( ZZ  X.  NN ) ) : ( ZZ  X.  NN )
-onto-> ( (  /  |`  ( ZZ  X.  NN ) )
" ( ZZ  X.  NN ) )  <->  ( (  /  |`  ( ZZ  X.  NN ) )  |`  ( ZZ  X.  NN ) ) : ( ZZ  X.  NN ) -onto-> QQ )
2923, 28mpbi 144 . . . . . 6  |-  ( (  /  |`  ( ZZ  X.  NN ) )  |`  ( ZZ  X.  NN ) ) : ( ZZ  X.  NN )
-onto-> QQ
30 foco 5323 . . . . . 6  |-  ( ( ( (  /  |`  ( ZZ  X.  NN ) )  |`  ( ZZ  X.  NN ) ) : ( ZZ  X.  NN )
-onto-> QQ  /\  g : om -onto-> ( ZZ  X.  NN ) )  ->  (
( (  /  |`  ( ZZ  X.  NN ) )  |`  ( ZZ  X.  NN ) )  o.  g
) : om -onto-> QQ )
3129, 30mpan 418 . . . . 5  |-  ( g : om -onto-> ( ZZ 
X.  NN )  -> 
( ( (  /  |`  ( ZZ  X.  NN ) )  |`  ( ZZ  X.  NN ) )  o.  g ) : om -onto-> QQ )
32 zex 9014 . . . . . . . . 9  |-  ZZ  e.  _V
3332, 4xpex 4622 . . . . . . . 8  |-  ( ZZ 
X.  NN )  e. 
_V
34 resfunexg 5607 . . . . . . . 8  |-  ( ( Fun  (  /  |`  ( ZZ  X.  NN ) )  /\  ( ZZ  X.  NN )  e.  _V )  ->  ( (  /  |`  ( ZZ  X.  NN ) )  |`  ( ZZ  X.  NN ) )  e.  _V )
3518, 33, 34mp2an 420 . . . . . . 7  |-  ( (  /  |`  ( ZZ  X.  NN ) )  |`  ( ZZ  X.  NN ) )  e.  _V
36 vex 2661 . . . . . . 7  |-  g  e. 
_V
3735, 36coex 5052 . . . . . 6  |-  ( ( (  /  |`  ( ZZ  X.  NN ) )  |`  ( ZZ  X.  NN ) )  o.  g
)  e.  _V
38 foeq1 5309 . . . . . 6  |-  ( f  =  ( ( (  /  |`  ( ZZ  X.  NN ) )  |`  ( ZZ  X.  NN ) )  o.  g
)  ->  ( f : om -onto-> QQ  <->  ( ( (  /  |`  ( ZZ  X.  NN ) )  |`  ( ZZ  X.  NN ) )  o.  g
) : om -onto-> QQ ) )
3937, 38spcev 2752 . . . . 5  |-  ( ( ( (  /  |`  ( ZZ  X.  NN ) )  |`  ( ZZ  X.  NN ) )  o.  g
) : om -onto-> QQ  ->  E. f  f : om -onto-> QQ )
4015, 31, 393syl 17 . . . 4  |-  ( g : om -1-1-onto-> ( ZZ  X.  NN )  ->  E. f  f : om -onto-> QQ )
4140exlimiv 1560 . . 3  |-  ( E. g  g : om -1-1-onto-> ( ZZ  X.  NN )  ->  E. f  f : om -onto-> QQ )
4214, 41ax-mp 5 . 2  |-  E. f 
f : om -onto-> QQ
4310ensymi 6642 . . 3  |-  om  ~~  NN
44 qex 9373 . . . 4  |-  QQ  e.  _V
45 nnssq 9370 . . . 4  |-  NN  C_  QQ
46 ssdomg 6638 . . . 4  |-  ( QQ  e.  _V  ->  ( NN  C_  QQ  ->  NN  ~<_  QQ ) )
4744, 45, 46mp2 16 . . 3  |-  NN  ~<_  QQ
48 endomtr 6650 . . 3  |-  ( ( om  ~~  NN  /\  NN 
~<_  QQ )  ->  om  ~<_  QQ )
4943, 47, 48mp2an 420 . 2  |-  om  ~<_  QQ
50 ctinf 11838 . 2  |-  ( QQ 
~~  NN  <->  ( A. p  e.  QQ  A. q  e.  QQ DECID  p  =  q  /\  E. f  f : om -onto-> QQ  /\  om  ~<_  QQ ) )
512, 42, 49, 50mpbir3an 1146 1  |-  QQ  ~~  NN
Colors of variables: wff set class
Syntax hints:    <-> wb 104  DECID wdc 802    = wceq 1314   E.wex 1451    e. wcel 1463   A.wral 2391   _Vcvv 2658    C_ wss 3039   class class class wbr 3897   omcom 4472    X. cxp 4505   dom cdm 4507    |` cres 4509   "cima 4510    o. ccom 4511   Fun wfun 5085    Fn wfn 5086   -onto->wfo 5089   -1-1-onto->wf1o 5090    ~~ cen 6598    ~<_ cdom 6599    / cdiv 8392   NNcn 8677   ZZcz 9005   QQcq 9360
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-coll 4011  ax-sep 4014  ax-nul 4022  ax-pow 4066  ax-pr 4099  ax-un 4323  ax-setind 4420  ax-iinf 4470  ax-cnex 7675  ax-resscn 7676  ax-1cn 7677  ax-1re 7678  ax-icn 7679  ax-addcl 7680  ax-addrcl 7681  ax-mulcl 7682  ax-mulrcl 7683  ax-addcom 7684  ax-mulcom 7685  ax-addass 7686  ax-mulass 7687  ax-distr 7688  ax-i2m1 7689  ax-0lt1 7690  ax-1rid 7691  ax-0id 7692  ax-rnegex 7693  ax-precex 7694  ax-cnre 7695  ax-pre-ltirr 7696  ax-pre-ltwlin 7697  ax-pre-lttrn 7698  ax-pre-apti 7699  ax-pre-ltadd 7700  ax-pre-mulgt0 7701  ax-pre-mulext 7702  ax-arch 7703
This theorem depends on definitions:  df-bi 116  df-dc 803  df-3or 946  df-3an 947  df-tru 1317  df-fal 1320  df-xor 1337  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-ne 2284  df-nel 2379  df-ral 2396  df-rex 2397  df-reu 2398  df-rmo 2399  df-rab 2400  df-v 2660  df-sbc 2881  df-csb 2974  df-dif 3041  df-un 3043  df-in 3045  df-ss 3052  df-nul 3332  df-if 3443  df-pw 3480  df-sn 3501  df-pr 3502  df-op 3504  df-uni 3705  df-int 3740  df-iun 3783  df-br 3898  df-opab 3958  df-mpt 3959  df-tr 3995  df-id 4183  df-po 4186  df-iso 4187  df-iord 4256  df-on 4258  df-ilim 4259  df-suc 4261  df-iom 4473  df-xp 4513  df-rel 4514  df-cnv 4515  df-co 4516  df-dm 4517  df-rn 4518  df-res 4519  df-ima 4520  df-iota 5056  df-fun 5093  df-fn 5094  df-f 5095  df-f1 5096  df-fo 5097  df-f1o 5098  df-fv 5099  df-riota 5696  df-ov 5743  df-oprab 5744  df-mpo 5745  df-1st 6004  df-2nd 6005  df-recs 6168  df-frec 6254  df-1o 6279  df-er 6395  df-pm 6511  df-en 6601  df-dom 6602  df-fin 6603  df-dju 6889  df-inl 6898  df-inr 6899  df-case 6935  df-pnf 7766  df-mnf 7767  df-xr 7768  df-ltxr 7769  df-le 7770  df-sub 7899  df-neg 7900  df-reap 8300  df-ap 8307  df-div 8393  df-inn 8678  df-2 8736  df-n0 8929  df-z 9006  df-uz 9276  df-q 9361  df-rp 9391  df-fz 9731  df-fl 9983  df-mod 10036  df-seqfrec 10159  df-exp 10233  df-dvds 11390
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator