ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qnnen Unicode version

Theorem qnnen 12917
Description: The rational numbers are countably infinite. Corollary 8.1.23 of [AczelRathjen], p. 75. This is Metamath 100 proof #3. (Contributed by Jim Kingdon, 11-Aug-2023.)
Assertion
Ref Expression
qnnen  |-  QQ  ~~  NN

Proof of Theorem qnnen
Dummy variables  f  g  p  q are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 qdceq 10424 . . 3  |-  ( ( p  e.  QQ  /\  q  e.  QQ )  -> DECID  p  =  q )
21rgen2a 2562 . 2  |-  A. p  e.  QQ  A. q  e.  QQ DECID  p  =  q
3 znnen 12884 . . . . . . . 8  |-  ZZ  ~~  NN
4 nnex 9077 . . . . . . . . 9  |-  NN  e.  _V
54enref 6879 . . . . . . . 8  |-  NN  ~~  NN
6 xpen 6967 . . . . . . . 8  |-  ( ( ZZ  ~~  NN  /\  NN  ~~  NN )  -> 
( ZZ  X.  NN )  ~~  ( NN  X.  NN ) )
73, 5, 6mp2an 426 . . . . . . 7  |-  ( ZZ 
X.  NN )  ~~  ( NN  X.  NN )
8 xpnnen 12880 . . . . . . 7  |-  ( NN 
X.  NN )  ~~  NN
97, 8entri 6901 . . . . . 6  |-  ( ZZ 
X.  NN )  ~~  NN
10 nnenom 10616 . . . . . 6  |-  NN  ~~  om
119, 10entri 6901 . . . . 5  |-  ( ZZ 
X.  NN )  ~~  om
1211ensymi 6897 . . . 4  |-  om  ~~  ( ZZ  X.  NN )
13 bren 6858 . . . 4  |-  ( om 
~~  ( ZZ  X.  NN )  <->  E. g  g : om -1-1-onto-> ( ZZ  X.  NN ) )
1412, 13mpbi 145 . . 3  |-  E. g 
g : om -1-1-onto-> ( ZZ  X.  NN )
15 f1ofo 5551 . . . . 5  |-  ( g : om -1-1-onto-> ( ZZ  X.  NN )  ->  g : om -onto->
( ZZ  X.  NN ) )
16 divfnzn 9777 . . . . . . . . 9  |-  (  /  |`  ( ZZ  X.  NN ) )  Fn  ( ZZ  X.  NN )
17 fnfun 5390 . . . . . . . . 9  |-  ( (  /  |`  ( ZZ  X.  NN ) )  Fn  ( ZZ  X.  NN )  ->  Fun  (  /  |`  ( ZZ  X.  NN ) ) )
1816, 17ax-mp 5 . . . . . . . 8  |-  Fun  (  /  |`  ( ZZ  X.  NN ) )
19 fndm 5392 . . . . . . . . 9  |-  ( (  /  |`  ( ZZ  X.  NN ) )  Fn  ( ZZ  X.  NN )  ->  dom  (  /  |`  ( ZZ  X.  NN ) )  =  ( ZZ  X.  NN ) )
20 eqimss2 3256 . . . . . . . . 9  |-  ( dom  (  /  |`  ( ZZ  X.  NN ) )  =  ( ZZ  X.  NN )  ->  ( ZZ 
X.  NN )  C_  dom  (  /  |`  ( ZZ  X.  NN ) ) )
2116, 19, 20mp2b 8 . . . . . . . 8  |-  ( ZZ 
X.  NN )  C_  dom  (  /  |`  ( ZZ  X.  NN ) )
22 fores 5530 . . . . . . . 8  |-  ( ( Fun  (  /  |`  ( ZZ  X.  NN ) )  /\  ( ZZ  X.  NN )  C_  dom  (  /  |`  ( ZZ  X.  NN ) ) )  -> 
( (  /  |`  ( ZZ  X.  NN ) )  |`  ( ZZ  X.  NN ) ) : ( ZZ  X.  NN )
-onto-> ( (  /  |`  ( ZZ  X.  NN ) )
" ( ZZ  X.  NN ) ) )
2318, 21, 22mp2an 426 . . . . . . 7  |-  ( (  /  |`  ( ZZ  X.  NN ) )  |`  ( ZZ  X.  NN ) ) : ( ZZ  X.  NN )
-onto-> ( (  /  |`  ( ZZ  X.  NN ) )
" ( ZZ  X.  NN ) )
24 resima 5011 . . . . . . . . 9  |-  ( (  /  |`  ( ZZ  X.  NN ) ) "
( ZZ  X.  NN ) )  =  (  /  " ( ZZ 
X.  NN ) )
25 df-q 9776 . . . . . . . . 9  |-  QQ  =  (  /  " ( ZZ 
X.  NN ) )
2624, 25eqtr4i 2231 . . . . . . . 8  |-  ( (  /  |`  ( ZZ  X.  NN ) ) "
( ZZ  X.  NN ) )  =  QQ
27 foeq3 5518 . . . . . . . 8  |-  ( ( (  /  |`  ( ZZ  X.  NN ) )
" ( ZZ  X.  NN ) )  =  QQ 
->  ( ( (  /  |`  ( ZZ  X.  NN ) )  |`  ( ZZ  X.  NN ) ) : ( ZZ  X.  NN ) -onto-> ( (  /  |`  ( ZZ  X.  NN ) ) " ( ZZ  X.  NN ) )  <-> 
( (  /  |`  ( ZZ  X.  NN ) )  |`  ( ZZ  X.  NN ) ) : ( ZZ  X.  NN )
-onto-> QQ ) )
2826, 27ax-mp 5 . . . . . . 7  |-  ( ( (  /  |`  ( ZZ  X.  NN ) )  |`  ( ZZ  X.  NN ) ) : ( ZZ  X.  NN )
-onto-> ( (  /  |`  ( ZZ  X.  NN ) )
" ( ZZ  X.  NN ) )  <->  ( (  /  |`  ( ZZ  X.  NN ) )  |`  ( ZZ  X.  NN ) ) : ( ZZ  X.  NN ) -onto-> QQ )
2923, 28mpbi 145 . . . . . 6  |-  ( (  /  |`  ( ZZ  X.  NN ) )  |`  ( ZZ  X.  NN ) ) : ( ZZ  X.  NN )
-onto-> QQ
30 foco 5531 . . . . . 6  |-  ( ( ( (  /  |`  ( ZZ  X.  NN ) )  |`  ( ZZ  X.  NN ) ) : ( ZZ  X.  NN )
-onto-> QQ  /\  g : om -onto-> ( ZZ  X.  NN ) )  ->  (
( (  /  |`  ( ZZ  X.  NN ) )  |`  ( ZZ  X.  NN ) )  o.  g
) : om -onto-> QQ )
3129, 30mpan 424 . . . . 5  |-  ( g : om -onto-> ( ZZ 
X.  NN )  -> 
( ( (  /  |`  ( ZZ  X.  NN ) )  |`  ( ZZ  X.  NN ) )  o.  g ) : om -onto-> QQ )
32 zex 9416 . . . . . . . . 9  |-  ZZ  e.  _V
3332, 4xpex 4808 . . . . . . . 8  |-  ( ZZ 
X.  NN )  e. 
_V
34 resfunexg 5828 . . . . . . . 8  |-  ( ( Fun  (  /  |`  ( ZZ  X.  NN ) )  /\  ( ZZ  X.  NN )  e.  _V )  ->  ( (  /  |`  ( ZZ  X.  NN ) )  |`  ( ZZ  X.  NN ) )  e.  _V )
3518, 33, 34mp2an 426 . . . . . . 7  |-  ( (  /  |`  ( ZZ  X.  NN ) )  |`  ( ZZ  X.  NN ) )  e.  _V
36 vex 2779 . . . . . . 7  |-  g  e. 
_V
3735, 36coex 5247 . . . . . 6  |-  ( ( (  /  |`  ( ZZ  X.  NN ) )  |`  ( ZZ  X.  NN ) )  o.  g
)  e.  _V
38 foeq1 5516 . . . . . 6  |-  ( f  =  ( ( (  /  |`  ( ZZ  X.  NN ) )  |`  ( ZZ  X.  NN ) )  o.  g
)  ->  ( f : om -onto-> QQ  <->  ( ( (  /  |`  ( ZZ  X.  NN ) )  |`  ( ZZ  X.  NN ) )  o.  g
) : om -onto-> QQ ) )
3937, 38spcev 2875 . . . . 5  |-  ( ( ( (  /  |`  ( ZZ  X.  NN ) )  |`  ( ZZ  X.  NN ) )  o.  g
) : om -onto-> QQ  ->  E. f  f : om -onto-> QQ )
4015, 31, 393syl 17 . . . 4  |-  ( g : om -1-1-onto-> ( ZZ  X.  NN )  ->  E. f  f : om -onto-> QQ )
4140exlimiv 1622 . . 3  |-  ( E. g  g : om -1-1-onto-> ( ZZ  X.  NN )  ->  E. f  f : om -onto-> QQ )
4214, 41ax-mp 5 . 2  |-  E. f 
f : om -onto-> QQ
4310ensymi 6897 . . 3  |-  om  ~~  NN
44 qex 9788 . . . 4  |-  QQ  e.  _V
45 nnssq 9785 . . . 4  |-  NN  C_  QQ
46 ssdomg 6893 . . . 4  |-  ( QQ  e.  _V  ->  ( NN  C_  QQ  ->  NN  ~<_  QQ ) )
4744, 45, 46mp2 16 . . 3  |-  NN  ~<_  QQ
48 endomtr 6905 . . 3  |-  ( ( om  ~~  NN  /\  NN 
~<_  QQ )  ->  om  ~<_  QQ )
4943, 47, 48mp2an 426 . 2  |-  om  ~<_  QQ
50 ctinf 12916 . 2  |-  ( QQ 
~~  NN  <->  ( A. p  e.  QQ  A. q  e.  QQ DECID  p  =  q  /\  E. f  f : om -onto-> QQ  /\  om  ~<_  QQ ) )
512, 42, 49, 50mpbir3an 1182 1  |-  QQ  ~~  NN
Colors of variables: wff set class
Syntax hints:    <-> wb 105  DECID wdc 836    = wceq 1373   E.wex 1516    e. wcel 2178   A.wral 2486   _Vcvv 2776    C_ wss 3174   class class class wbr 4059   omcom 4656    X. cxp 4691   dom cdm 4693    |` cres 4695   "cima 4696    o. ccom 4697   Fun wfun 5284    Fn wfn 5285   -onto->wfo 5288   -1-1-onto->wf1o 5289    ~~ cen 6848    ~<_ cdom 6849    / cdiv 8780   NNcn 9071   ZZcz 9407   QQcq 9775
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-mulrcl 8059  ax-addcom 8060  ax-mulcom 8061  ax-addass 8062  ax-mulass 8063  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-1rid 8067  ax-0id 8068  ax-rnegex 8069  ax-precex 8070  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076  ax-pre-mulgt0 8077  ax-pre-mulext 8078  ax-arch 8079
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-xor 1396  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-po 4361  df-iso 4362  df-iord 4431  df-on 4433  df-ilim 4434  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-frec 6500  df-1o 6525  df-er 6643  df-pm 6761  df-en 6851  df-dom 6852  df-fin 6853  df-dju 7166  df-inl 7175  df-inr 7176  df-case 7212  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-reap 8683  df-ap 8690  df-div 8781  df-inn 9072  df-2 9130  df-n0 9331  df-z 9408  df-uz 9684  df-q 9776  df-rp 9811  df-fz 10166  df-fl 10450  df-mod 10505  df-seqfrec 10630  df-exp 10721  df-dvds 12214
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator