ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qnnen Unicode version

Theorem qnnen 12147
Description: The rational numbers are countably infinite. Corollary 8.1.23 of [AczelRathjen], p. 75. This is Metamath 100 proof #3. (Contributed by Jim Kingdon, 11-Aug-2023.)
Assertion
Ref Expression
qnnen  |-  QQ  ~~  NN

Proof of Theorem qnnen
Dummy variables  f  g  p  q are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 qdceq 10141 . . 3  |-  ( ( p  e.  QQ  /\  q  e.  QQ )  -> DECID  p  =  q )
21rgen2a 2511 . 2  |-  A. p  e.  QQ  A. q  e.  QQ DECID  p  =  q
3 znnen 12114 . . . . . . . 8  |-  ZZ  ~~  NN
4 nnex 8834 . . . . . . . . 9  |-  NN  e.  _V
54enref 6707 . . . . . . . 8  |-  NN  ~~  NN
6 xpen 6787 . . . . . . . 8  |-  ( ( ZZ  ~~  NN  /\  NN  ~~  NN )  -> 
( ZZ  X.  NN )  ~~  ( NN  X.  NN ) )
73, 5, 6mp2an 423 . . . . . . 7  |-  ( ZZ 
X.  NN )  ~~  ( NN  X.  NN )
8 xpnnen 12110 . . . . . . 7  |-  ( NN 
X.  NN )  ~~  NN
97, 8entri 6728 . . . . . 6  |-  ( ZZ 
X.  NN )  ~~  NN
10 nnenom 10328 . . . . . 6  |-  NN  ~~  om
119, 10entri 6728 . . . . 5  |-  ( ZZ 
X.  NN )  ~~  om
1211ensymi 6724 . . . 4  |-  om  ~~  ( ZZ  X.  NN )
13 bren 6689 . . . 4  |-  ( om 
~~  ( ZZ  X.  NN )  <->  E. g  g : om -1-1-onto-> ( ZZ  X.  NN ) )
1412, 13mpbi 144 . . 3  |-  E. g 
g : om -1-1-onto-> ( ZZ  X.  NN )
15 f1ofo 5420 . . . . 5  |-  ( g : om -1-1-onto-> ( ZZ  X.  NN )  ->  g : om -onto->
( ZZ  X.  NN ) )
16 divfnzn 9525 . . . . . . . . 9  |-  (  /  |`  ( ZZ  X.  NN ) )  Fn  ( ZZ  X.  NN )
17 fnfun 5266 . . . . . . . . 9  |-  ( (  /  |`  ( ZZ  X.  NN ) )  Fn  ( ZZ  X.  NN )  ->  Fun  (  /  |`  ( ZZ  X.  NN ) ) )
1816, 17ax-mp 5 . . . . . . . 8  |-  Fun  (  /  |`  ( ZZ  X.  NN ) )
19 fndm 5268 . . . . . . . . 9  |-  ( (  /  |`  ( ZZ  X.  NN ) )  Fn  ( ZZ  X.  NN )  ->  dom  (  /  |`  ( ZZ  X.  NN ) )  =  ( ZZ  X.  NN ) )
20 eqimss2 3183 . . . . . . . . 9  |-  ( dom  (  /  |`  ( ZZ  X.  NN ) )  =  ( ZZ  X.  NN )  ->  ( ZZ 
X.  NN )  C_  dom  (  /  |`  ( ZZ  X.  NN ) ) )
2116, 19, 20mp2b 8 . . . . . . . 8  |-  ( ZZ 
X.  NN )  C_  dom  (  /  |`  ( ZZ  X.  NN ) )
22 fores 5400 . . . . . . . 8  |-  ( ( Fun  (  /  |`  ( ZZ  X.  NN ) )  /\  ( ZZ  X.  NN )  C_  dom  (  /  |`  ( ZZ  X.  NN ) ) )  -> 
( (  /  |`  ( ZZ  X.  NN ) )  |`  ( ZZ  X.  NN ) ) : ( ZZ  X.  NN )
-onto-> ( (  /  |`  ( ZZ  X.  NN ) )
" ( ZZ  X.  NN ) ) )
2318, 21, 22mp2an 423 . . . . . . 7  |-  ( (  /  |`  ( ZZ  X.  NN ) )  |`  ( ZZ  X.  NN ) ) : ( ZZ  X.  NN )
-onto-> ( (  /  |`  ( ZZ  X.  NN ) )
" ( ZZ  X.  NN ) )
24 resima 4898 . . . . . . . . 9  |-  ( (  /  |`  ( ZZ  X.  NN ) ) "
( ZZ  X.  NN ) )  =  (  /  " ( ZZ 
X.  NN ) )
25 df-q 9524 . . . . . . . . 9  |-  QQ  =  (  /  " ( ZZ 
X.  NN ) )
2624, 25eqtr4i 2181 . . . . . . . 8  |-  ( (  /  |`  ( ZZ  X.  NN ) ) "
( ZZ  X.  NN ) )  =  QQ
27 foeq3 5389 . . . . . . . 8  |-  ( ( (  /  |`  ( ZZ  X.  NN ) )
" ( ZZ  X.  NN ) )  =  QQ 
->  ( ( (  /  |`  ( ZZ  X.  NN ) )  |`  ( ZZ  X.  NN ) ) : ( ZZ  X.  NN ) -onto-> ( (  /  |`  ( ZZ  X.  NN ) ) " ( ZZ  X.  NN ) )  <-> 
( (  /  |`  ( ZZ  X.  NN ) )  |`  ( ZZ  X.  NN ) ) : ( ZZ  X.  NN )
-onto-> QQ ) )
2826, 27ax-mp 5 . . . . . . 7  |-  ( ( (  /  |`  ( ZZ  X.  NN ) )  |`  ( ZZ  X.  NN ) ) : ( ZZ  X.  NN )
-onto-> ( (  /  |`  ( ZZ  X.  NN ) )
" ( ZZ  X.  NN ) )  <->  ( (  /  |`  ( ZZ  X.  NN ) )  |`  ( ZZ  X.  NN ) ) : ( ZZ  X.  NN ) -onto-> QQ )
2923, 28mpbi 144 . . . . . 6  |-  ( (  /  |`  ( ZZ  X.  NN ) )  |`  ( ZZ  X.  NN ) ) : ( ZZ  X.  NN )
-onto-> QQ
30 foco 5401 . . . . . 6  |-  ( ( ( (  /  |`  ( ZZ  X.  NN ) )  |`  ( ZZ  X.  NN ) ) : ( ZZ  X.  NN )
-onto-> QQ  /\  g : om -onto-> ( ZZ  X.  NN ) )  ->  (
( (  /  |`  ( ZZ  X.  NN ) )  |`  ( ZZ  X.  NN ) )  o.  g
) : om -onto-> QQ )
3129, 30mpan 421 . . . . 5  |-  ( g : om -onto-> ( ZZ 
X.  NN )  -> 
( ( (  /  |`  ( ZZ  X.  NN ) )  |`  ( ZZ  X.  NN ) )  o.  g ) : om -onto-> QQ )
32 zex 9171 . . . . . . . . 9  |-  ZZ  e.  _V
3332, 4xpex 4700 . . . . . . . 8  |-  ( ZZ 
X.  NN )  e. 
_V
34 resfunexg 5687 . . . . . . . 8  |-  ( ( Fun  (  /  |`  ( ZZ  X.  NN ) )  /\  ( ZZ  X.  NN )  e.  _V )  ->  ( (  /  |`  ( ZZ  X.  NN ) )  |`  ( ZZ  X.  NN ) )  e.  _V )
3518, 33, 34mp2an 423 . . . . . . 7  |-  ( (  /  |`  ( ZZ  X.  NN ) )  |`  ( ZZ  X.  NN ) )  e.  _V
36 vex 2715 . . . . . . 7  |-  g  e. 
_V
3735, 36coex 5130 . . . . . 6  |-  ( ( (  /  |`  ( ZZ  X.  NN ) )  |`  ( ZZ  X.  NN ) )  o.  g
)  e.  _V
38 foeq1 5387 . . . . . 6  |-  ( f  =  ( ( (  /  |`  ( ZZ  X.  NN ) )  |`  ( ZZ  X.  NN ) )  o.  g
)  ->  ( f : om -onto-> QQ  <->  ( ( (  /  |`  ( ZZ  X.  NN ) )  |`  ( ZZ  X.  NN ) )  o.  g
) : om -onto-> QQ ) )
3937, 38spcev 2807 . . . . 5  |-  ( ( ( (  /  |`  ( ZZ  X.  NN ) )  |`  ( ZZ  X.  NN ) )  o.  g
) : om -onto-> QQ  ->  E. f  f : om -onto-> QQ )
4015, 31, 393syl 17 . . . 4  |-  ( g : om -1-1-onto-> ( ZZ  X.  NN )  ->  E. f  f : om -onto-> QQ )
4140exlimiv 1578 . . 3  |-  ( E. g  g : om -1-1-onto-> ( ZZ  X.  NN )  ->  E. f  f : om -onto-> QQ )
4214, 41ax-mp 5 . 2  |-  E. f 
f : om -onto-> QQ
4310ensymi 6724 . . 3  |-  om  ~~  NN
44 qex 9536 . . . 4  |-  QQ  e.  _V
45 nnssq 9533 . . . 4  |-  NN  C_  QQ
46 ssdomg 6720 . . . 4  |-  ( QQ  e.  _V  ->  ( NN  C_  QQ  ->  NN  ~<_  QQ ) )
4744, 45, 46mp2 16 . . 3  |-  NN  ~<_  QQ
48 endomtr 6732 . . 3  |-  ( ( om  ~~  NN  /\  NN 
~<_  QQ )  ->  om  ~<_  QQ )
4943, 47, 48mp2an 423 . 2  |-  om  ~<_  QQ
50 ctinf 12146 . 2  |-  ( QQ 
~~  NN  <->  ( A. p  e.  QQ  A. q  e.  QQ DECID  p  =  q  /\  E. f  f : om -onto-> QQ  /\  om  ~<_  QQ ) )
512, 42, 49, 50mpbir3an 1164 1  |-  QQ  ~~  NN
Colors of variables: wff set class
Syntax hints:    <-> wb 104  DECID wdc 820    = wceq 1335   E.wex 1472    e. wcel 2128   A.wral 2435   _Vcvv 2712    C_ wss 3102   class class class wbr 3965   omcom 4548    X. cxp 4583   dom cdm 4585    |` cres 4587   "cima 4588    o. ccom 4589   Fun wfun 5163    Fn wfn 5164   -onto->wfo 5167   -1-1-onto->wf1o 5168    ~~ cen 6680    ~<_ cdom 6681    / cdiv 8540   NNcn 8828   ZZcz 9162   QQcq 9523
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4079  ax-sep 4082  ax-nul 4090  ax-pow 4135  ax-pr 4169  ax-un 4393  ax-setind 4495  ax-iinf 4546  ax-cnex 7818  ax-resscn 7819  ax-1cn 7820  ax-1re 7821  ax-icn 7822  ax-addcl 7823  ax-addrcl 7824  ax-mulcl 7825  ax-mulrcl 7826  ax-addcom 7827  ax-mulcom 7828  ax-addass 7829  ax-mulass 7830  ax-distr 7831  ax-i2m1 7832  ax-0lt1 7833  ax-1rid 7834  ax-0id 7835  ax-rnegex 7836  ax-precex 7837  ax-cnre 7838  ax-pre-ltirr 7839  ax-pre-ltwlin 7840  ax-pre-lttrn 7841  ax-pre-apti 7842  ax-pre-ltadd 7843  ax-pre-mulgt0 7844  ax-pre-mulext 7845  ax-arch 7846
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-xor 1358  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rmo 2443  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-if 3506  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-int 3808  df-iun 3851  df-br 3966  df-opab 4026  df-mpt 4027  df-tr 4063  df-id 4253  df-po 4256  df-iso 4257  df-iord 4326  df-on 4328  df-ilim 4329  df-suc 4331  df-iom 4549  df-xp 4591  df-rel 4592  df-cnv 4593  df-co 4594  df-dm 4595  df-rn 4596  df-res 4597  df-ima 4598  df-iota 5134  df-fun 5171  df-fn 5172  df-f 5173  df-f1 5174  df-fo 5175  df-f1o 5176  df-fv 5177  df-riota 5777  df-ov 5824  df-oprab 5825  df-mpo 5826  df-1st 6085  df-2nd 6086  df-recs 6249  df-frec 6335  df-1o 6360  df-er 6477  df-pm 6593  df-en 6683  df-dom 6684  df-fin 6685  df-dju 6977  df-inl 6986  df-inr 6987  df-case 7023  df-pnf 7909  df-mnf 7910  df-xr 7911  df-ltxr 7912  df-le 7913  df-sub 8043  df-neg 8044  df-reap 8445  df-ap 8452  df-div 8541  df-inn 8829  df-2 8887  df-n0 9086  df-z 9163  df-uz 9435  df-q 9524  df-rp 9556  df-fz 9908  df-fl 10164  df-mod 10217  df-seqfrec 10340  df-exp 10414  df-dvds 11679
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator