ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nffo Unicode version

Theorem nffo 5476
Description: Bound-variable hypothesis builder for an onto function. (Contributed by NM, 16-May-2004.)
Hypotheses
Ref Expression
nffo.1  |-  F/_ x F
nffo.2  |-  F/_ x A
nffo.3  |-  F/_ x B
Assertion
Ref Expression
nffo  |-  F/ x  F : A -onto-> B

Proof of Theorem nffo
StepHypRef Expression
1 df-fo 5261 . 2  |-  ( F : A -onto-> B  <->  ( F  Fn  A  /\  ran  F  =  B ) )
2 nffo.1 . . . 4  |-  F/_ x F
3 nffo.2 . . . 4  |-  F/_ x A
42, 3nffn 5351 . . 3  |-  F/ x  F  Fn  A
52nfrn 4908 . . . 4  |-  F/_ x ran  F
6 nffo.3 . . . 4  |-  F/_ x B
75, 6nfeq 2344 . . 3  |-  F/ x ran  F  =  B
84, 7nfan 1576 . 2  |-  F/ x
( F  Fn  A  /\  ran  F  =  B )
91, 8nfxfr 1485 1  |-  F/ x  F : A -onto-> B
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1364   F/wnf 1471   F/_wnfc 2323   ran crn 4661    Fn wfn 5250   -onto->wfo 5253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-v 2762  df-un 3158  df-in 3160  df-ss 3167  df-sn 3625  df-pr 3626  df-op 3628  df-br 4031  df-opab 4092  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-fun 5257  df-fn 5258  df-fo 5261
This theorem is referenced by:  nff1o  5499  ctiunctal  12601
  Copyright terms: Public domain W3C validator