Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nffo | Unicode version |
Description: Bound-variable hypothesis builder for an onto function. (Contributed by NM, 16-May-2004.) |
Ref | Expression |
---|---|
nffo.1 | |
nffo.2 | |
nffo.3 |
Ref | Expression |
---|---|
nffo |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fo 5214 | . 2 | |
2 | nffo.1 | . . . 4 | |
3 | nffo.2 | . . . 4 | |
4 | 2, 3 | nffn 5304 | . . 3 |
5 | 2 | nfrn 4865 | . . . 4 |
6 | nffo.3 | . . . 4 | |
7 | 5, 6 | nfeq 2325 | . . 3 |
8 | 4, 7 | nfan 1563 | . 2 |
9 | 1, 8 | nfxfr 1472 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 104 wceq 1353 wnf 1458 wnfc 2304 crn 4621 wfn 5203 wfo 5206 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-v 2737 df-un 3131 df-in 3133 df-ss 3140 df-sn 3595 df-pr 3596 df-op 3598 df-br 3999 df-opab 4060 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-fun 5210 df-fn 5211 df-fo 5214 |
This theorem is referenced by: nff1o 5451 ctiunctal 12409 |
Copyright terms: Public domain | W3C validator |