ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nffo Unicode version

Theorem nffo 5429
Description: Bound-variable hypothesis builder for an onto function. (Contributed by NM, 16-May-2004.)
Hypotheses
Ref Expression
nffo.1  |-  F/_ x F
nffo.2  |-  F/_ x A
nffo.3  |-  F/_ x B
Assertion
Ref Expression
nffo  |-  F/ x  F : A -onto-> B

Proof of Theorem nffo
StepHypRef Expression
1 df-fo 5214 . 2  |-  ( F : A -onto-> B  <->  ( F  Fn  A  /\  ran  F  =  B ) )
2 nffo.1 . . . 4  |-  F/_ x F
3 nffo.2 . . . 4  |-  F/_ x A
42, 3nffn 5304 . . 3  |-  F/ x  F  Fn  A
52nfrn 4865 . . . 4  |-  F/_ x ran  F
6 nffo.3 . . . 4  |-  F/_ x B
75, 6nfeq 2325 . . 3  |-  F/ x ran  F  =  B
84, 7nfan 1563 . 2  |-  F/ x
( F  Fn  A  /\  ran  F  =  B )
91, 8nfxfr 1472 1  |-  F/ x  F : A -onto-> B
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1353   F/wnf 1458   F/_wnfc 2304   ran crn 4621    Fn wfn 5203   -onto->wfo 5206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-ext 2157
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-v 2737  df-un 3131  df-in 3133  df-ss 3140  df-sn 3595  df-pr 3596  df-op 3598  df-br 3999  df-opab 4060  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-fun 5210  df-fn 5211  df-fo 5214
This theorem is referenced by:  nff1o  5451  ctiunctal  12409
  Copyright terms: Public domain W3C validator