ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nffo Unicode version

Theorem nffo 5419
Description: Bound-variable hypothesis builder for an onto function. (Contributed by NM, 16-May-2004.)
Hypotheses
Ref Expression
nffo.1  |-  F/_ x F
nffo.2  |-  F/_ x A
nffo.3  |-  F/_ x B
Assertion
Ref Expression
nffo  |-  F/ x  F : A -onto-> B

Proof of Theorem nffo
StepHypRef Expression
1 df-fo 5204 . 2  |-  ( F : A -onto-> B  <->  ( F  Fn  A  /\  ran  F  =  B ) )
2 nffo.1 . . . 4  |-  F/_ x F
3 nffo.2 . . . 4  |-  F/_ x A
42, 3nffn 5294 . . 3  |-  F/ x  F  Fn  A
52nfrn 4856 . . . 4  |-  F/_ x ran  F
6 nffo.3 . . . 4  |-  F/_ x B
75, 6nfeq 2320 . . 3  |-  F/ x ran  F  =  B
84, 7nfan 1558 . 2  |-  F/ x
( F  Fn  A  /\  ran  F  =  B )
91, 8nfxfr 1467 1  |-  F/ x  F : A -onto-> B
Colors of variables: wff set class
Syntax hints:    /\ wa 103    = wceq 1348   F/wnf 1453   F/_wnfc 2299   ran crn 4612    Fn wfn 5193   -onto->wfo 5196
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-sn 3589  df-pr 3590  df-op 3592  df-br 3990  df-opab 4051  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-fun 5200  df-fn 5201  df-fo 5204
This theorem is referenced by:  nff1o  5440  ctiunctal  12396
  Copyright terms: Public domain W3C validator