ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fofun Unicode version

Theorem fofun 5521
Description: An onto mapping is a function. (Contributed by NM, 29-Mar-2008.)
Assertion
Ref Expression
fofun  |-  ( F : A -onto-> B  ->  Fun  F )

Proof of Theorem fofun
StepHypRef Expression
1 fof 5520 . 2  |-  ( F : A -onto-> B  ->  F : A --> B )
2 ffun 5448 . 2  |-  ( F : A --> B  ->  Fun  F )
31, 2syl 14 1  |-  ( F : A -onto-> B  ->  Fun  F )
Colors of variables: wff set class
Syntax hints:    -> wi 4   Fun wfun 5284   -->wf 5286   -onto->wfo 5288
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-11 1530  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-in 3180  df-ss 3187  df-fn 5293  df-f 5294  df-fo 5296
This theorem is referenced by:  foimacnv  5562  resdif  5566  fococnv2  5570  focdmex  6223  ctssdccl  7239  suplocexprlem2b  7862  suplocexprlemmu  7866  suplocexprlemdisj  7868  suplocexprlemloc  7869  suplocexprlemub  7871  suplocexprlemlub  7872  ennnfonelemex  12900  ctinf  12916
  Copyright terms: Public domain W3C validator