ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fofun Unicode version

Theorem fofun 5477
Description: An onto mapping is a function. (Contributed by NM, 29-Mar-2008.)
Assertion
Ref Expression
fofun  |-  ( F : A -onto-> B  ->  Fun  F )

Proof of Theorem fofun
StepHypRef Expression
1 fof 5476 . 2  |-  ( F : A -onto-> B  ->  F : A --> B )
2 ffun 5406 . 2  |-  ( F : A --> B  ->  Fun  F )
31, 2syl 14 1  |-  ( F : A -onto-> B  ->  Fun  F )
Colors of variables: wff set class
Syntax hints:    -> wi 4   Fun wfun 5248   -->wf 5250   -onto->wfo 5252
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-11 1517  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-in 3159  df-ss 3166  df-fn 5257  df-f 5258  df-fo 5260
This theorem is referenced by:  foimacnv  5518  resdif  5522  fococnv2  5526  focdmex  6167  ctssdccl  7170  suplocexprlem2b  7774  suplocexprlemmu  7778  suplocexprlemdisj  7780  suplocexprlemloc  7781  suplocexprlemub  7783  suplocexprlemlub  7784  ennnfonelemex  12571  ctinf  12587
  Copyright terms: Public domain W3C validator