ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fofun Unicode version

Theorem fofun 5498
Description: An onto mapping is a function. (Contributed by NM, 29-Mar-2008.)
Assertion
Ref Expression
fofun  |-  ( F : A -onto-> B  ->  Fun  F )

Proof of Theorem fofun
StepHypRef Expression
1 fof 5497 . 2  |-  ( F : A -onto-> B  ->  F : A --> B )
2 ffun 5427 . 2  |-  ( F : A --> B  ->  Fun  F )
31, 2syl 14 1  |-  ( F : A -onto-> B  ->  Fun  F )
Colors of variables: wff set class
Syntax hints:    -> wi 4   Fun wfun 5264   -->wf 5266   -onto->wfo 5268
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-11 1528  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-in 3171  df-ss 3178  df-fn 5273  df-f 5274  df-fo 5276
This theorem is referenced by:  foimacnv  5539  resdif  5543  fococnv2  5547  focdmex  6199  ctssdccl  7212  suplocexprlem2b  7826  suplocexprlemmu  7830  suplocexprlemdisj  7832  suplocexprlemloc  7833  suplocexprlemub  7835  suplocexprlemlub  7836  ennnfonelemex  12756  ctinf  12772
  Copyright terms: Public domain W3C validator