Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > foimacnv | Unicode version |
Description: A reverse version of f1imacnv 5459. (Contributed by Jeff Hankins, 16-Jul-2009.) |
Ref | Expression |
---|---|
foimacnv |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resima 4924 | . 2 | |
2 | fofun 5421 | . . . . . 6 | |
3 | 2 | adantr 274 | . . . . 5 |
4 | funcnvres2 5273 | . . . . 5 | |
5 | 3, 4 | syl 14 | . . . 4 |
6 | 5 | imaeq1d 4952 | . . 3 |
7 | resss 4915 | . . . . . . . . . . 11 | |
8 | cnvss 4784 | . . . . . . . . . . 11 | |
9 | 7, 8 | ax-mp 5 | . . . . . . . . . 10 |
10 | cnvcnvss 5065 | . . . . . . . . . 10 | |
11 | 9, 10 | sstri 3156 | . . . . . . . . 9 |
12 | funss 5217 | . . . . . . . . 9 | |
13 | 11, 2, 12 | mpsyl 65 | . . . . . . . 8 |
14 | 13 | adantr 274 | . . . . . . 7 |
15 | df-ima 4624 | . . . . . . . 8 | |
16 | df-rn 4622 | . . . . . . . 8 | |
17 | 15, 16 | eqtr2i 2192 | . . . . . . 7 |
18 | 14, 17 | jctir 311 | . . . . . 6 |
19 | df-fn 5201 | . . . . . 6 | |
20 | 18, 19 | sylibr 133 | . . . . 5 |
21 | dfdm4 4803 | . . . . . 6 | |
22 | forn 5423 | . . . . . . . . . 10 | |
23 | 22 | sseq2d 3177 | . . . . . . . . 9 |
24 | 23 | biimpar 295 | . . . . . . . 8 |
25 | df-rn 4622 | . . . . . . . 8 | |
26 | 24, 25 | sseqtrdi 3195 | . . . . . . 7 |
27 | ssdmres 4913 | . . . . . . 7 | |
28 | 26, 27 | sylib 121 | . . . . . 6 |
29 | 21, 28 | eqtr3id 2217 | . . . . 5 |
30 | df-fo 5204 | . . . . 5 | |
31 | 20, 29, 30 | sylanbrc 415 | . . . 4 |
32 | foima 5425 | . . . 4 | |
33 | 31, 32 | syl 14 | . . 3 |
34 | 6, 33 | eqtr3d 2205 | . 2 |
35 | 1, 34 | eqtr3id 2217 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1348 wss 3121 ccnv 4610 cdm 4611 crn 4612 cres 4613 cima 4614 wfun 5192 wfn 5193 wfo 5196 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-br 3990 df-opab 4051 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-fun 5200 df-fn 5201 df-f 5202 df-fo 5204 |
This theorem is referenced by: f1opw2 6055 fopwdom 6814 fisumss 11355 fprodssdc 11553 hmeoimaf1o 13108 |
Copyright terms: Public domain | W3C validator |