| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > foimacnv | Unicode version | ||
| Description: A reverse version of f1imacnv 5589. (Contributed by Jeff Hankins, 16-Jul-2009.) |
| Ref | Expression |
|---|---|
| foimacnv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resima 5038 |
. 2
| |
| 2 | fofun 5549 |
. . . . . 6
| |
| 3 | 2 | adantr 276 |
. . . . 5
|
| 4 | funcnvres2 5396 |
. . . . 5
| |
| 5 | 3, 4 | syl 14 |
. . . 4
|
| 6 | 5 | imaeq1d 5067 |
. . 3
|
| 7 | resss 5029 |
. . . . . . . . . . 11
| |
| 8 | cnvss 4895 |
. . . . . . . . . . 11
| |
| 9 | 7, 8 | ax-mp 5 |
. . . . . . . . . 10
|
| 10 | cnvcnvss 5183 |
. . . . . . . . . 10
| |
| 11 | 9, 10 | sstri 3233 |
. . . . . . . . 9
|
| 12 | funss 5337 |
. . . . . . . . 9
| |
| 13 | 11, 2, 12 | mpsyl 65 |
. . . . . . . 8
|
| 14 | 13 | adantr 276 |
. . . . . . 7
|
| 15 | df-ima 4732 |
. . . . . . . 8
| |
| 16 | df-rn 4730 |
. . . . . . . 8
| |
| 17 | 15, 16 | eqtr2i 2251 |
. . . . . . 7
|
| 18 | 14, 17 | jctir 313 |
. . . . . 6
|
| 19 | df-fn 5321 |
. . . . . 6
| |
| 20 | 18, 19 | sylibr 134 |
. . . . 5
|
| 21 | dfdm4 4915 |
. . . . . 6
| |
| 22 | forn 5551 |
. . . . . . . . . 10
| |
| 23 | 22 | sseq2d 3254 |
. . . . . . . . 9
|
| 24 | 23 | biimpar 297 |
. . . . . . . 8
|
| 25 | df-rn 4730 |
. . . . . . . 8
| |
| 26 | 24, 25 | sseqtrdi 3272 |
. . . . . . 7
|
| 27 | ssdmres 5027 |
. . . . . . 7
| |
| 28 | 26, 27 | sylib 122 |
. . . . . 6
|
| 29 | 21, 28 | eqtr3id 2276 |
. . . . 5
|
| 30 | df-fo 5324 |
. . . . 5
| |
| 31 | 20, 29, 30 | sylanbrc 417 |
. . . 4
|
| 32 | foima 5553 |
. . . 4
| |
| 33 | 31, 32 | syl 14 |
. . 3
|
| 34 | 6, 33 | eqtr3d 2264 |
. 2
|
| 35 | 1, 34 | eqtr3id 2276 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-br 4084 df-opab 4146 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-fun 5320 df-fn 5321 df-f 5322 df-fo 5324 |
| This theorem is referenced by: f1opw2 6212 fopwdom 6997 fisumss 11903 fprodssdc 12101 hmeoimaf1o 14988 |
| Copyright terms: Public domain | W3C validator |