| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > foimacnv | Unicode version | ||
| Description: A reverse version of f1imacnv 5561. (Contributed by Jeff Hankins, 16-Jul-2009.) |
| Ref | Expression |
|---|---|
| foimacnv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resima 5011 |
. 2
| |
| 2 | fofun 5521 |
. . . . . 6
| |
| 3 | 2 | adantr 276 |
. . . . 5
|
| 4 | funcnvres2 5368 |
. . . . 5
| |
| 5 | 3, 4 | syl 14 |
. . . 4
|
| 6 | 5 | imaeq1d 5040 |
. . 3
|
| 7 | resss 5002 |
. . . . . . . . . . 11
| |
| 8 | cnvss 4869 |
. . . . . . . . . . 11
| |
| 9 | 7, 8 | ax-mp 5 |
. . . . . . . . . 10
|
| 10 | cnvcnvss 5156 |
. . . . . . . . . 10
| |
| 11 | 9, 10 | sstri 3210 |
. . . . . . . . 9
|
| 12 | funss 5309 |
. . . . . . . . 9
| |
| 13 | 11, 2, 12 | mpsyl 65 |
. . . . . . . 8
|
| 14 | 13 | adantr 276 |
. . . . . . 7
|
| 15 | df-ima 4706 |
. . . . . . . 8
| |
| 16 | df-rn 4704 |
. . . . . . . 8
| |
| 17 | 15, 16 | eqtr2i 2229 |
. . . . . . 7
|
| 18 | 14, 17 | jctir 313 |
. . . . . 6
|
| 19 | df-fn 5293 |
. . . . . 6
| |
| 20 | 18, 19 | sylibr 134 |
. . . . 5
|
| 21 | dfdm4 4889 |
. . . . . 6
| |
| 22 | forn 5523 |
. . . . . . . . . 10
| |
| 23 | 22 | sseq2d 3231 |
. . . . . . . . 9
|
| 24 | 23 | biimpar 297 |
. . . . . . . 8
|
| 25 | df-rn 4704 |
. . . . . . . 8
| |
| 26 | 24, 25 | sseqtrdi 3249 |
. . . . . . 7
|
| 27 | ssdmres 5000 |
. . . . . . 7
| |
| 28 | 26, 27 | sylib 122 |
. . . . . 6
|
| 29 | 21, 28 | eqtr3id 2254 |
. . . . 5
|
| 30 | df-fo 5296 |
. . . . 5
| |
| 31 | 20, 29, 30 | sylanbrc 417 |
. . . 4
|
| 32 | foima 5525 |
. . . 4
| |
| 33 | 31, 32 | syl 14 |
. . 3
|
| 34 | 6, 33 | eqtr3d 2242 |
. 2
|
| 35 | 1, 34 | eqtr3id 2254 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-br 4060 df-opab 4122 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-fun 5292 df-fn 5293 df-f 5294 df-fo 5296 |
| This theorem is referenced by: f1opw2 6175 fopwdom 6958 fisumss 11818 fprodssdc 12016 hmeoimaf1o 14901 |
| Copyright terms: Public domain | W3C validator |