ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  foimacnv Unicode version

Theorem foimacnv 5518
Description: A reverse version of f1imacnv 5517. (Contributed by Jeff Hankins, 16-Jul-2009.)
Assertion
Ref Expression
foimacnv  |-  ( ( F : A -onto-> B  /\  C  C_  B )  ->  ( F "
( `' F " C ) )  =  C )

Proof of Theorem foimacnv
StepHypRef Expression
1 resima 4975 . 2  |-  ( ( F  |`  ( `' F " C ) )
" ( `' F " C ) )  =  ( F " ( `' F " C ) )
2 fofun 5477 . . . . . 6  |-  ( F : A -onto-> B  ->  Fun  F )
32adantr 276 . . . . 5  |-  ( ( F : A -onto-> B  /\  C  C_  B )  ->  Fun  F )
4 funcnvres2 5329 . . . . 5  |-  ( Fun 
F  ->  `' ( `' F  |`  C )  =  ( F  |`  ( `' F " C ) ) )
53, 4syl 14 . . . 4  |-  ( ( F : A -onto-> B  /\  C  C_  B )  ->  `' ( `' F  |`  C )  =  ( F  |`  ( `' F " C ) ) )
65imaeq1d 5004 . . 3  |-  ( ( F : A -onto-> B  /\  C  C_  B )  ->  ( `' ( `' F  |`  C )
" ( `' F " C ) )  =  ( ( F  |`  ( `' F " C ) ) " ( `' F " C ) ) )
7 resss 4966 . . . . . . . . . . 11  |-  ( `' F  |`  C )  C_  `' F
8 cnvss 4835 . . . . . . . . . . 11  |-  ( ( `' F  |`  C ) 
C_  `' F  ->  `' ( `' F  |`  C )  C_  `' `' F )
97, 8ax-mp 5 . . . . . . . . . 10  |-  `' ( `' F  |`  C ) 
C_  `' `' F
10 cnvcnvss 5120 . . . . . . . . . 10  |-  `' `' F  C_  F
119, 10sstri 3188 . . . . . . . . 9  |-  `' ( `' F  |`  C ) 
C_  F
12 funss 5273 . . . . . . . . 9  |-  ( `' ( `' F  |`  C )  C_  F  ->  ( Fun  F  ->  Fun  `' ( `' F  |`  C ) ) )
1311, 2, 12mpsyl 65 . . . . . . . 8  |-  ( F : A -onto-> B  ->  Fun  `' ( `' F  |`  C ) )
1413adantr 276 . . . . . . 7  |-  ( ( F : A -onto-> B  /\  C  C_  B )  ->  Fun  `' ( `' F  |`  C ) )
15 df-ima 4672 . . . . . . . 8  |-  ( `' F " C )  =  ran  ( `' F  |`  C )
16 df-rn 4670 . . . . . . . 8  |-  ran  ( `' F  |`  C )  =  dom  `' ( `' F  |`  C )
1715, 16eqtr2i 2215 . . . . . . 7  |-  dom  `' ( `' F  |`  C )  =  ( `' F " C )
1814, 17jctir 313 . . . . . 6  |-  ( ( F : A -onto-> B  /\  C  C_  B )  ->  ( Fun  `' ( `' F  |`  C )  /\  dom  `' ( `' F  |`  C )  =  ( `' F " C ) ) )
19 df-fn 5257 . . . . . 6  |-  ( `' ( `' F  |`  C )  Fn  ( `' F " C )  <-> 
( Fun  `' ( `' F  |`  C )  /\  dom  `' ( `' F  |`  C )  =  ( `' F " C ) ) )
2018, 19sylibr 134 . . . . 5  |-  ( ( F : A -onto-> B  /\  C  C_  B )  ->  `' ( `' F  |`  C )  Fn  ( `' F " C ) )
21 dfdm4 4854 . . . . . 6  |-  dom  ( `' F  |`  C )  =  ran  `' ( `' F  |`  C )
22 forn 5479 . . . . . . . . . 10  |-  ( F : A -onto-> B  ->  ran  F  =  B )
2322sseq2d 3209 . . . . . . . . 9  |-  ( F : A -onto-> B  -> 
( C  C_  ran  F  <-> 
C  C_  B )
)
2423biimpar 297 . . . . . . . 8  |-  ( ( F : A -onto-> B  /\  C  C_  B )  ->  C  C_  ran  F )
25 df-rn 4670 . . . . . . . 8  |-  ran  F  =  dom  `' F
2624, 25sseqtrdi 3227 . . . . . . 7  |-  ( ( F : A -onto-> B  /\  C  C_  B )  ->  C  C_  dom  `' F )
27 ssdmres 4964 . . . . . . 7  |-  ( C 
C_  dom  `' F  <->  dom  ( `' F  |`  C )  =  C )
2826, 27sylib 122 . . . . . 6  |-  ( ( F : A -onto-> B  /\  C  C_  B )  ->  dom  ( `' F  |`  C )  =  C )
2921, 28eqtr3id 2240 . . . . 5  |-  ( ( F : A -onto-> B  /\  C  C_  B )  ->  ran  `' ( `' F  |`  C )  =  C )
30 df-fo 5260 . . . . 5  |-  ( `' ( `' F  |`  C ) : ( `' F " C )
-onto-> C  <->  ( `' ( `' F  |`  C )  Fn  ( `' F " C )  /\  ran  `' ( `' F  |`  C )  =  C ) )
3120, 29, 30sylanbrc 417 . . . 4  |-  ( ( F : A -onto-> B  /\  C  C_  B )  ->  `' ( `' F  |`  C ) : ( `' F " C ) -onto-> C )
32 foima 5481 . . . 4  |-  ( `' ( `' F  |`  C ) : ( `' F " C )
-onto-> C  ->  ( `' ( `' F  |`  C )
" ( `' F " C ) )  =  C )
3331, 32syl 14 . . 3  |-  ( ( F : A -onto-> B  /\  C  C_  B )  ->  ( `' ( `' F  |`  C )
" ( `' F " C ) )  =  C )
346, 33eqtr3d 2228 . 2  |-  ( ( F : A -onto-> B  /\  C  C_  B )  ->  ( ( F  |`  ( `' F " C ) ) "
( `' F " C ) )  =  C )
351, 34eqtr3id 2240 1  |-  ( ( F : A -onto-> B  /\  C  C_  B )  ->  ( F "
( `' F " C ) )  =  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    C_ wss 3153   `'ccnv 4658   dom cdm 4659   ran crn 4660    |` cres 4661   "cima 4662   Fun wfun 5248    Fn wfn 5249   -onto->wfo 5252
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030  df-opab 4091  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-fun 5256  df-fn 5257  df-f 5258  df-fo 5260
This theorem is referenced by:  f1opw2  6124  fopwdom  6892  fisumss  11535  fprodssdc  11733  hmeoimaf1o  14482
  Copyright terms: Public domain W3C validator