Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > foimacnv | Unicode version |
Description: A reverse version of f1imacnv 5449. (Contributed by Jeff Hankins, 16-Jul-2009.) |
Ref | Expression |
---|---|
foimacnv |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resima 4917 | . 2 | |
2 | fofun 5411 | . . . . . 6 | |
3 | 2 | adantr 274 | . . . . 5 |
4 | funcnvres2 5263 | . . . . 5 | |
5 | 3, 4 | syl 14 | . . . 4 |
6 | 5 | imaeq1d 4945 | . . 3 |
7 | resss 4908 | . . . . . . . . . . 11 | |
8 | cnvss 4777 | . . . . . . . . . . 11 | |
9 | 7, 8 | ax-mp 5 | . . . . . . . . . 10 |
10 | cnvcnvss 5058 | . . . . . . . . . 10 | |
11 | 9, 10 | sstri 3151 | . . . . . . . . 9 |
12 | funss 5207 | . . . . . . . . 9 | |
13 | 11, 2, 12 | mpsyl 65 | . . . . . . . 8 |
14 | 13 | adantr 274 | . . . . . . 7 |
15 | df-ima 4617 | . . . . . . . 8 | |
16 | df-rn 4615 | . . . . . . . 8 | |
17 | 15, 16 | eqtr2i 2187 | . . . . . . 7 |
18 | 14, 17 | jctir 311 | . . . . . 6 |
19 | df-fn 5191 | . . . . . 6 | |
20 | 18, 19 | sylibr 133 | . . . . 5 |
21 | dfdm4 4796 | . . . . . 6 | |
22 | forn 5413 | . . . . . . . . . 10 | |
23 | 22 | sseq2d 3172 | . . . . . . . . 9 |
24 | 23 | biimpar 295 | . . . . . . . 8 |
25 | df-rn 4615 | . . . . . . . 8 | |
26 | 24, 25 | sseqtrdi 3190 | . . . . . . 7 |
27 | ssdmres 4906 | . . . . . . 7 | |
28 | 26, 27 | sylib 121 | . . . . . 6 |
29 | 21, 28 | eqtr3id 2213 | . . . . 5 |
30 | df-fo 5194 | . . . . 5 | |
31 | 20, 29, 30 | sylanbrc 414 | . . . 4 |
32 | foima 5415 | . . . 4 | |
33 | 31, 32 | syl 14 | . . 3 |
34 | 6, 33 | eqtr3d 2200 | . 2 |
35 | 1, 34 | eqtr3id 2213 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1343 wss 3116 ccnv 4603 cdm 4604 crn 4605 cres 4606 cima 4607 wfun 5182 wfn 5183 wfo 5186 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 df-opab 4044 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-fun 5190 df-fn 5191 df-f 5192 df-fo 5194 |
This theorem is referenced by: f1opw2 6044 fopwdom 6802 fisumss 11333 fprodssdc 11531 hmeoimaf1o 12954 |
Copyright terms: Public domain | W3C validator |