| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > foimacnv | Unicode version | ||
| Description: A reverse version of f1imacnv 5541. (Contributed by Jeff Hankins, 16-Jul-2009.) |
| Ref | Expression |
|---|---|
| foimacnv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resima 4993 |
. 2
| |
| 2 | fofun 5501 |
. . . . . 6
| |
| 3 | 2 | adantr 276 |
. . . . 5
|
| 4 | funcnvres2 5350 |
. . . . 5
| |
| 5 | 3, 4 | syl 14 |
. . . 4
|
| 6 | 5 | imaeq1d 5022 |
. . 3
|
| 7 | resss 4984 |
. . . . . . . . . . 11
| |
| 8 | cnvss 4852 |
. . . . . . . . . . 11
| |
| 9 | 7, 8 | ax-mp 5 |
. . . . . . . . . 10
|
| 10 | cnvcnvss 5138 |
. . . . . . . . . 10
| |
| 11 | 9, 10 | sstri 3202 |
. . . . . . . . 9
|
| 12 | funss 5291 |
. . . . . . . . 9
| |
| 13 | 11, 2, 12 | mpsyl 65 |
. . . . . . . 8
|
| 14 | 13 | adantr 276 |
. . . . . . 7
|
| 15 | df-ima 4689 |
. . . . . . . 8
| |
| 16 | df-rn 4687 |
. . . . . . . 8
| |
| 17 | 15, 16 | eqtr2i 2227 |
. . . . . . 7
|
| 18 | 14, 17 | jctir 313 |
. . . . . 6
|
| 19 | df-fn 5275 |
. . . . . 6
| |
| 20 | 18, 19 | sylibr 134 |
. . . . 5
|
| 21 | dfdm4 4871 |
. . . . . 6
| |
| 22 | forn 5503 |
. . . . . . . . . 10
| |
| 23 | 22 | sseq2d 3223 |
. . . . . . . . 9
|
| 24 | 23 | biimpar 297 |
. . . . . . . 8
|
| 25 | df-rn 4687 |
. . . . . . . 8
| |
| 26 | 24, 25 | sseqtrdi 3241 |
. . . . . . 7
|
| 27 | ssdmres 4982 |
. . . . . . 7
| |
| 28 | 26, 27 | sylib 122 |
. . . . . 6
|
| 29 | 21, 28 | eqtr3id 2252 |
. . . . 5
|
| 30 | df-fo 5278 |
. . . . 5
| |
| 31 | 20, 29, 30 | sylanbrc 417 |
. . . 4
|
| 32 | foima 5505 |
. . . 4
| |
| 33 | 31, 32 | syl 14 |
. . 3
|
| 34 | 6, 33 | eqtr3d 2240 |
. 2
|
| 35 | 1, 34 | eqtr3id 2252 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-br 4046 df-opab 4107 df-id 4341 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-rn 4687 df-res 4688 df-ima 4689 df-fun 5274 df-fn 5275 df-f 5276 df-fo 5278 |
| This theorem is referenced by: f1opw2 6154 fopwdom 6935 fisumss 11736 fprodssdc 11934 hmeoimaf1o 14819 |
| Copyright terms: Public domain | W3C validator |