| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > foimacnv | Unicode version | ||
| Description: A reverse version of f1imacnv 5521. (Contributed by Jeff Hankins, 16-Jul-2009.) | 
| Ref | Expression | 
|---|---|
| foimacnv | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | resima 4979 | 
. 2
 | |
| 2 | fofun 5481 | 
. . . . . 6
 | |
| 3 | 2 | adantr 276 | 
. . . . 5
 | 
| 4 | funcnvres2 5333 | 
. . . . 5
 | |
| 5 | 3, 4 | syl 14 | 
. . . 4
 | 
| 6 | 5 | imaeq1d 5008 | 
. . 3
 | 
| 7 | resss 4970 | 
. . . . . . . . . . 11
 | |
| 8 | cnvss 4839 | 
. . . . . . . . . . 11
 | |
| 9 | 7, 8 | ax-mp 5 | 
. . . . . . . . . 10
 | 
| 10 | cnvcnvss 5124 | 
. . . . . . . . . 10
 | |
| 11 | 9, 10 | sstri 3192 | 
. . . . . . . . 9
 | 
| 12 | funss 5277 | 
. . . . . . . . 9
 | |
| 13 | 11, 2, 12 | mpsyl 65 | 
. . . . . . . 8
 | 
| 14 | 13 | adantr 276 | 
. . . . . . 7
 | 
| 15 | df-ima 4676 | 
. . . . . . . 8
 | |
| 16 | df-rn 4674 | 
. . . . . . . 8
 | |
| 17 | 15, 16 | eqtr2i 2218 | 
. . . . . . 7
 | 
| 18 | 14, 17 | jctir 313 | 
. . . . . 6
 | 
| 19 | df-fn 5261 | 
. . . . . 6
 | |
| 20 | 18, 19 | sylibr 134 | 
. . . . 5
 | 
| 21 | dfdm4 4858 | 
. . . . . 6
 | |
| 22 | forn 5483 | 
. . . . . . . . . 10
 | |
| 23 | 22 | sseq2d 3213 | 
. . . . . . . . 9
 | 
| 24 | 23 | biimpar 297 | 
. . . . . . . 8
 | 
| 25 | df-rn 4674 | 
. . . . . . . 8
 | |
| 26 | 24, 25 | sseqtrdi 3231 | 
. . . . . . 7
 | 
| 27 | ssdmres 4968 | 
. . . . . . 7
 | |
| 28 | 26, 27 | sylib 122 | 
. . . . . 6
 | 
| 29 | 21, 28 | eqtr3id 2243 | 
. . . . 5
 | 
| 30 | df-fo 5264 | 
. . . . 5
 | |
| 31 | 20, 29, 30 | sylanbrc 417 | 
. . . 4
 | 
| 32 | foima 5485 | 
. . . 4
 | |
| 33 | 31, 32 | syl 14 | 
. . 3
 | 
| 34 | 6, 33 | eqtr3d 2231 | 
. 2
 | 
| 35 | 1, 34 | eqtr3id 2243 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-br 4034 df-opab 4095 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-fun 5260 df-fn 5261 df-f 5262 df-fo 5264 | 
| This theorem is referenced by: f1opw2 6129 fopwdom 6897 fisumss 11557 fprodssdc 11755 hmeoimaf1o 14550 | 
| Copyright terms: Public domain | W3C validator |