ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fococnv2 Unicode version

Theorem fococnv2 5527
Description: The composition of an onto function and its converse. (Contributed by Stefan O'Rear, 12-Feb-2015.)
Assertion
Ref Expression
fococnv2  |-  ( F : A -onto-> B  -> 
( F  o.  `' F )  =  (  _I  |`  B )
)

Proof of Theorem fococnv2
StepHypRef Expression
1 fofun 5478 . . 3  |-  ( F : A -onto-> B  ->  Fun  F )
2 funcocnv2 5526 . . 3  |-  ( Fun 
F  ->  ( F  o.  `' F )  =  (  _I  |`  ran  F ) )
31, 2syl 14 . 2  |-  ( F : A -onto-> B  -> 
( F  o.  `' F )  =  (  _I  |`  ran  F ) )
4 forn 5480 . . 3  |-  ( F : A -onto-> B  ->  ran  F  =  B )
54reseq2d 4943 . 2  |-  ( F : A -onto-> B  -> 
(  _I  |`  ran  F
)  =  (  _I  |`  B ) )
63, 5eqtrd 2226 1  |-  ( F : A -onto-> B  -> 
( F  o.  `' F )  =  (  _I  |`  B )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    _I cid 4320   `'ccnv 4659   ran crn 4661    |` cres 4662    o. ccom 4664   Fun wfun 5249   -onto->wfo 5253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-br 4031  df-opab 4092  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-fun 5257  df-fn 5258  df-f 5259  df-fo 5261
This theorem is referenced by:  f1ococnv2  5528  foeqcnvco  5834
  Copyright terms: Public domain W3C validator