ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fococnv2 Unicode version

Theorem fococnv2 5565
Description: The composition of an onto function and its converse. (Contributed by Stefan O'Rear, 12-Feb-2015.)
Assertion
Ref Expression
fococnv2  |-  ( F : A -onto-> B  -> 
( F  o.  `' F )  =  (  _I  |`  B )
)

Proof of Theorem fococnv2
StepHypRef Expression
1 fofun 5516 . . 3  |-  ( F : A -onto-> B  ->  Fun  F )
2 funcocnv2 5564 . . 3  |-  ( Fun 
F  ->  ( F  o.  `' F )  =  (  _I  |`  ran  F ) )
31, 2syl 14 . 2  |-  ( F : A -onto-> B  -> 
( F  o.  `' F )  =  (  _I  |`  ran  F ) )
4 forn 5518 . . 3  |-  ( F : A -onto-> B  ->  ran  F  =  B )
54reseq2d 4973 . 2  |-  ( F : A -onto-> B  -> 
(  _I  |`  ran  F
)  =  (  _I  |`  B ) )
63, 5eqtrd 2239 1  |-  ( F : A -onto-> B  -> 
( F  o.  `' F )  =  (  _I  |`  B )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    _I cid 4348   `'ccnv 4687   ran crn 4689    |` cres 4690    o. ccom 4692   Fun wfun 5279   -onto->wfo 5283
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4173  ax-pow 4229  ax-pr 4264
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-br 4055  df-opab 4117  df-id 4353  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-fun 5287  df-fn 5288  df-f 5289  df-fo 5291
This theorem is referenced by:  f1ococnv2  5566  foeqcnvco  5877
  Copyright terms: Public domain W3C validator