ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fococnv2 Unicode version

Theorem fococnv2 5597
Description: The composition of an onto function and its converse. (Contributed by Stefan O'Rear, 12-Feb-2015.)
Assertion
Ref Expression
fococnv2  |-  ( F : A -onto-> B  -> 
( F  o.  `' F )  =  (  _I  |`  B )
)

Proof of Theorem fococnv2
StepHypRef Expression
1 fofun 5548 . . 3  |-  ( F : A -onto-> B  ->  Fun  F )
2 funcocnv2 5596 . . 3  |-  ( Fun 
F  ->  ( F  o.  `' F )  =  (  _I  |`  ran  F ) )
31, 2syl 14 . 2  |-  ( F : A -onto-> B  -> 
( F  o.  `' F )  =  (  _I  |`  ran  F ) )
4 forn 5550 . . 3  |-  ( F : A -onto-> B  ->  ran  F  =  B )
54reseq2d 5004 . 2  |-  ( F : A -onto-> B  -> 
(  _I  |`  ran  F
)  =  (  _I  |`  B ) )
63, 5eqtrd 2262 1  |-  ( F : A -onto-> B  -> 
( F  o.  `' F )  =  (  _I  |`  B )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1395    _I cid 4378   `'ccnv 4717   ran crn 4719    |` cres 4720    o. ccom 4722   Fun wfun 5311   -onto->wfo 5315
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4083  df-opab 4145  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-fun 5319  df-fn 5320  df-f 5321  df-fo 5323
This theorem is referenced by:  f1ococnv2  5598  foeqcnvco  5913
  Copyright terms: Public domain W3C validator