Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fofun | GIF version |
Description: An onto mapping is a function. (Contributed by NM, 29-Mar-2008.) |
Ref | Expression |
---|---|
fofun | ⊢ (𝐹:𝐴–onto→𝐵 → Fun 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fof 5410 | . 2 ⊢ (𝐹:𝐴–onto→𝐵 → 𝐹:𝐴⟶𝐵) | |
2 | ffun 5340 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → Fun 𝐹) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝐹:𝐴–onto→𝐵 → Fun 𝐹) |
Colors of variables: wff set class |
Syntax hints: → wi 4 Fun wfun 5182 ⟶wf 5184 –onto→wfo 5186 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-11 1494 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-in 3122 df-ss 3129 df-fn 5191 df-f 5192 df-fo 5194 |
This theorem is referenced by: foimacnv 5450 resdif 5454 fococnv2 5458 fornex 6083 ctssdccl 7076 suplocexprlem2b 7655 suplocexprlemmu 7659 suplocexprlemdisj 7661 suplocexprlemloc 7662 suplocexprlemub 7664 suplocexprlemlub 7665 ennnfonelemex 12347 ctinf 12363 |
Copyright terms: Public domain | W3C validator |