ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fofun GIF version

Theorem fofun 5506
Description: An onto mapping is a function. (Contributed by NM, 29-Mar-2008.)
Assertion
Ref Expression
fofun (𝐹:𝐴onto𝐵 → Fun 𝐹)

Proof of Theorem fofun
StepHypRef Expression
1 fof 5505 . 2 (𝐹:𝐴onto𝐵𝐹:𝐴𝐵)
2 ffun 5434 . 2 (𝐹:𝐴𝐵 → Fun 𝐹)
31, 2syl 14 1 (𝐹:𝐴onto𝐵 → Fun 𝐹)
Colors of variables: wff set class
Syntax hints:  wi 4  Fun wfun 5270  wf 5272  ontowfo 5274
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-11 1530  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-in 3173  df-ss 3180  df-fn 5279  df-f 5280  df-fo 5282
This theorem is referenced by:  foimacnv  5547  resdif  5551  fococnv2  5555  focdmex  6207  ctssdccl  7220  suplocexprlem2b  7834  suplocexprlemmu  7838  suplocexprlemdisj  7840  suplocexprlemloc  7841  suplocexprlemub  7843  suplocexprlemlub  7844  ennnfonelemex  12829  ctinf  12845
  Copyright terms: Public domain W3C validator