Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fofun | GIF version |
Description: An onto mapping is a function. (Contributed by NM, 29-Mar-2008.) |
Ref | Expression |
---|---|
fofun | ⊢ (𝐹:𝐴–onto→𝐵 → Fun 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fof 5430 | . 2 ⊢ (𝐹:𝐴–onto→𝐵 → 𝐹:𝐴⟶𝐵) | |
2 | ffun 5360 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → Fun 𝐹) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝐹:𝐴–onto→𝐵 → Fun 𝐹) |
Colors of variables: wff set class |
Syntax hints: → wi 4 Fun wfun 5202 ⟶wf 5204 –onto→wfo 5206 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-11 1504 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-in 3133 df-ss 3140 df-fn 5211 df-f 5212 df-fo 5214 |
This theorem is referenced by: foimacnv 5471 resdif 5475 fococnv2 5479 focdmex 6106 ctssdccl 7100 suplocexprlem2b 7688 suplocexprlemmu 7692 suplocexprlemdisj 7694 suplocexprlemloc 7695 suplocexprlemub 7697 suplocexprlemlub 7698 ennnfonelemex 12380 ctinf 12396 |
Copyright terms: Public domain | W3C validator |