ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fofun GIF version

Theorem fofun 5411
Description: An onto mapping is a function. (Contributed by NM, 29-Mar-2008.)
Assertion
Ref Expression
fofun (𝐹:𝐴onto𝐵 → Fun 𝐹)

Proof of Theorem fofun
StepHypRef Expression
1 fof 5410 . 2 (𝐹:𝐴onto𝐵𝐹:𝐴𝐵)
2 ffun 5340 . 2 (𝐹:𝐴𝐵 → Fun 𝐹)
31, 2syl 14 1 (𝐹:𝐴onto𝐵 → Fun 𝐹)
Colors of variables: wff set class
Syntax hints:  wi 4  Fun wfun 5182  wf 5184  ontowfo 5186
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-11 1494  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-in 3122  df-ss 3129  df-fn 5191  df-f 5192  df-fo 5194
This theorem is referenced by:  foimacnv  5450  resdif  5454  fococnv2  5458  fornex  6083  ctssdccl  7076  suplocexprlem2b  7655  suplocexprlemmu  7659  suplocexprlemdisj  7661  suplocexprlemloc  7662  suplocexprlemub  7664  suplocexprlemlub  7665  ennnfonelemex  12347  ctinf  12363
  Copyright terms: Public domain W3C validator