ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fofun GIF version

Theorem fofun 5551
Description: An onto mapping is a function. (Contributed by NM, 29-Mar-2008.)
Assertion
Ref Expression
fofun (𝐹:𝐴onto𝐵 → Fun 𝐹)

Proof of Theorem fofun
StepHypRef Expression
1 fof 5550 . 2 (𝐹:𝐴onto𝐵𝐹:𝐴𝐵)
2 ffun 5476 . 2 (𝐹:𝐴𝐵 → Fun 𝐹)
31, 2syl 14 1 (𝐹:𝐴onto𝐵 → Fun 𝐹)
Colors of variables: wff set class
Syntax hints:  wi 4  Fun wfun 5312  wf 5314  ontowfo 5316
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-11 1552  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-in 3203  df-ss 3210  df-fn 5321  df-f 5322  df-fo 5324
This theorem is referenced by:  foimacnv  5592  resdif  5596  fococnv2  5600  focdmex  6266  ctssdccl  7286  suplocexprlem2b  7909  suplocexprlemmu  7913  suplocexprlemdisj  7915  suplocexprlemloc  7916  suplocexprlemub  7918  suplocexprlemlub  7919  ennnfonelemex  12993  ctinf  13009
  Copyright terms: Public domain W3C validator