ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fofun GIF version

Theorem fofun 5431
Description: An onto mapping is a function. (Contributed by NM, 29-Mar-2008.)
Assertion
Ref Expression
fofun (𝐹:𝐴onto𝐵 → Fun 𝐹)

Proof of Theorem fofun
StepHypRef Expression
1 fof 5430 . 2 (𝐹:𝐴onto𝐵𝐹:𝐴𝐵)
2 ffun 5360 . 2 (𝐹:𝐴𝐵 → Fun 𝐹)
31, 2syl 14 1 (𝐹:𝐴onto𝐵 → Fun 𝐹)
Colors of variables: wff set class
Syntax hints:  wi 4  Fun wfun 5202  wf 5204  ontowfo 5206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-11 1504  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-ext 2157
This theorem depends on definitions:  df-bi 117  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-in 3133  df-ss 3140  df-fn 5211  df-f 5212  df-fo 5214
This theorem is referenced by:  foimacnv  5471  resdif  5475  fococnv2  5479  focdmex  6106  ctssdccl  7100  suplocexprlem2b  7688  suplocexprlemmu  7692  suplocexprlemdisj  7694  suplocexprlemloc  7695  suplocexprlemub  7697  suplocexprlemlub  7698  ennnfonelemex  12380  ctinf  12396
  Copyright terms: Public domain W3C validator