| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fofun | GIF version | ||
| Description: An onto mapping is a function. (Contributed by NM, 29-Mar-2008.) |
| Ref | Expression |
|---|---|
| fofun | ⊢ (𝐹:𝐴–onto→𝐵 → Fun 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fof 5483 | . 2 ⊢ (𝐹:𝐴–onto→𝐵 → 𝐹:𝐴⟶𝐵) | |
| 2 | ffun 5413 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → Fun 𝐹) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝐹:𝐴–onto→𝐵 → Fun 𝐹) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 Fun wfun 5253 ⟶wf 5255 –onto→wfo 5257 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-in 3163 df-ss 3170 df-fn 5262 df-f 5263 df-fo 5265 |
| This theorem is referenced by: foimacnv 5525 resdif 5529 fococnv2 5533 focdmex 6181 ctssdccl 7186 suplocexprlem2b 7798 suplocexprlemmu 7802 suplocexprlemdisj 7804 suplocexprlemloc 7805 suplocexprlemub 7807 suplocexprlemlub 7808 ennnfonelemex 12656 ctinf 12672 |
| Copyright terms: Public domain | W3C validator |