| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > fofun | GIF version | ||
| Description: An onto mapping is a function. (Contributed by NM, 29-Mar-2008.) | 
| Ref | Expression | 
|---|---|
| fofun | ⊢ (𝐹:𝐴–onto→𝐵 → Fun 𝐹) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | fof 5480 | . 2 ⊢ (𝐹:𝐴–onto→𝐵 → 𝐹:𝐴⟶𝐵) | |
| 2 | ffun 5410 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → Fun 𝐹) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝐹:𝐴–onto→𝐵 → Fun 𝐹) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 Fun wfun 5252 ⟶wf 5254 –onto→wfo 5256 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-in 3163 df-ss 3170 df-fn 5261 df-f 5262 df-fo 5264 | 
| This theorem is referenced by: foimacnv 5522 resdif 5526 fococnv2 5530 focdmex 6172 ctssdccl 7177 suplocexprlem2b 7781 suplocexprlemmu 7785 suplocexprlemdisj 7787 suplocexprlemloc 7788 suplocexprlemub 7790 suplocexprlemlub 7791 ennnfonelemex 12631 ctinf 12647 | 
| Copyright terms: Public domain | W3C validator |