| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > focdmex | Unicode version | ||
| Description: If the domain of an onto function exists, so does its codomain. (Contributed by NM, 23-Jul-2004.) |
| Ref | Expression |
|---|---|
| focdmex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fofun 5521 |
. . . 4
| |
| 2 | funrnex 6222 |
. . . 4
| |
| 3 | 1, 2 | syl5com 29 |
. . 3
|
| 4 | fof 5520 |
. . . . 5
| |
| 5 | fdm 5451 |
. . . . 5
| |
| 6 | 4, 5 | syl 14 |
. . . 4
|
| 7 | 6 | eleq1d 2276 |
. . 3
|
| 8 | forn 5523 |
. . . 4
| |
| 9 | 8 | eleq1d 2276 |
. . 3
|
| 10 | 3, 7, 9 | 3imtr3d 202 |
. 2
|
| 11 | 10 | com12 30 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 |
| This theorem is referenced by: f1dmex 6224 f1oeng 6871 ctfoex 7246 ennnfonelemj0 12887 ennnfonelemg 12889 omctfn 12929 imasival 13253 imasbas 13254 imasplusg 13255 |
| Copyright terms: Public domain | W3C validator |