ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  focdmex Unicode version

Theorem focdmex 6167
Description: If the domain of an onto function exists, so does its codomain. (Contributed by NM, 23-Jul-2004.)
Assertion
Ref Expression
focdmex  |-  ( A  e.  C  ->  ( F : A -onto-> B  ->  B  e.  _V )
)

Proof of Theorem focdmex
StepHypRef Expression
1 fofun 5477 . . . 4  |-  ( F : A -onto-> B  ->  Fun  F )
2 funrnex 6166 . . . 4  |-  ( dom 
F  e.  C  -> 
( Fun  F  ->  ran 
F  e.  _V )
)
31, 2syl5com 29 . . 3  |-  ( F : A -onto-> B  -> 
( dom  F  e.  C  ->  ran  F  e.  _V ) )
4 fof 5476 . . . . 5  |-  ( F : A -onto-> B  ->  F : A --> B )
5 fdm 5409 . . . . 5  |-  ( F : A --> B  ->  dom  F  =  A )
64, 5syl 14 . . . 4  |-  ( F : A -onto-> B  ->  dom  F  =  A )
76eleq1d 2262 . . 3  |-  ( F : A -onto-> B  -> 
( dom  F  e.  C 
<->  A  e.  C ) )
8 forn 5479 . . . 4  |-  ( F : A -onto-> B  ->  ran  F  =  B )
98eleq1d 2262 . . 3  |-  ( F : A -onto-> B  -> 
( ran  F  e.  _V 
<->  B  e.  _V )
)
103, 7, 93imtr3d 202 . 2  |-  ( F : A -onto-> B  -> 
( A  e.  C  ->  B  e.  _V )
)
1110com12 30 1  |-  ( A  e.  C  ->  ( F : A -onto-> B  ->  B  e.  _V )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2164   _Vcvv 2760   dom cdm 4659   ran crn 4660   Fun wfun 5248   -->wf 5250   -onto->wfo 5252
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262
This theorem is referenced by:  f1dmex  6168  f1oeng  6811  ctfoex  7177  ennnfonelemj0  12558  ennnfonelemg  12560  omctfn  12600  imasival  12889  imasbas  12890  imasplusg  12891
  Copyright terms: Public domain W3C validator