ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  suplocexprlemlub Unicode version

Theorem suplocexprlemlub 7907
Description: Lemma for suplocexpr 7908. The putative supremum is a least upper bound. (Contributed by Jim Kingdon, 14-Jan-2024.)
Hypotheses
Ref Expression
suplocexpr.m  |-  ( ph  ->  E. x  x  e.  A )
suplocexpr.ub  |-  ( ph  ->  E. x  e.  P.  A. y  e.  A  y 
<P  x )
suplocexpr.loc  |-  ( ph  ->  A. x  e.  P.  A. y  e.  P.  (
x  <P  y  ->  ( E. z  e.  A  x  <P  z  \/  A. z  e.  A  z  <P  y ) ) )
suplocexpr.b  |-  B  = 
<. U. ( 1st " A
) ,  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A
) w  <Q  u } >.
Assertion
Ref Expression
suplocexprlemlub  |-  ( ph  ->  ( y  <P  B  ->  E. z  e.  A  y  <P  z ) )
Distinct variable groups:    y, A, z   
x, A, y    z, B    ph, y, z    ph, x
Allowed substitution hints:    ph( w, u)    A( w, u)    B( x, y, w, u)

Proof of Theorem suplocexprlemlub
Dummy variable  s is distinct from all other variables.
StepHypRef Expression
1 simpr 110 . . . 4  |-  ( (
ph  /\  y  <P  B )  ->  y  <P  B )
2 ltrelpr 7688 . . . . . . . 8  |-  <P  C_  ( P.  X.  P. )
32brel 4770 . . . . . . 7  |-  ( y 
<P  B  ->  ( y  e.  P.  /\  B  e.  P. ) )
43simpld 112 . . . . . 6  |-  ( y 
<P  B  ->  y  e. 
P. )
54adantl 277 . . . . 5  |-  ( (
ph  /\  y  <P  B )  ->  y  e.  P. )
63simprd 114 . . . . . 6  |-  ( y 
<P  B  ->  B  e. 
P. )
76adantl 277 . . . . 5  |-  ( (
ph  /\  y  <P  B )  ->  B  e.  P. )
8 ltdfpr 7689 . . . . 5  |-  ( ( y  e.  P.  /\  B  e.  P. )  ->  ( y  <P  B  <->  E. s  e.  Q.  ( s  e.  ( 2nd `  y
)  /\  s  e.  ( 1st `  B ) ) ) )
95, 7, 8syl2anc 411 . . . 4  |-  ( (
ph  /\  y  <P  B )  ->  ( y  <P  B  <->  E. s  e.  Q.  ( s  e.  ( 2nd `  y )  /\  s  e.  ( 1st `  B ) ) ) )
101, 9mpbid 147 . . 3  |-  ( (
ph  /\  y  <P  B )  ->  E. s  e.  Q.  ( s  e.  ( 2nd `  y
)  /\  s  e.  ( 1st `  B ) ) )
11 simprrr 540 . . . . . 6  |-  ( ( ( ph  /\  y  <P  B )  /\  (
s  e.  Q.  /\  ( s  e.  ( 2nd `  y )  /\  s  e.  ( 1st `  B ) ) ) )  -> 
s  e.  ( 1st `  B ) )
12 suplocexpr.b . . . . . . . . . 10  |-  B  = 
<. U. ( 1st " A
) ,  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A
) w  <Q  u } >.
1312fveq2i 5629 . . . . . . . . 9  |-  ( 1st `  B )  =  ( 1st `  <. U. ( 1st " A ) ,  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A ) w  <Q  u } >. )
14 npex 7656 . . . . . . . . . . . . 13  |-  P.  e.  _V
1514a1i 9 . . . . . . . . . . . 12  |-  ( ph  ->  P.  e.  _V )
16 suplocexpr.m . . . . . . . . . . . . 13  |-  ( ph  ->  E. x  x  e.  A )
17 suplocexpr.ub . . . . . . . . . . . . 13  |-  ( ph  ->  E. x  e.  P.  A. y  e.  A  y 
<P  x )
18 suplocexpr.loc . . . . . . . . . . . . 13  |-  ( ph  ->  A. x  e.  P.  A. y  e.  P.  (
x  <P  y  ->  ( E. z  e.  A  x  <P  z  \/  A. z  e.  A  z  <P  y ) ) )
1916, 17, 18suplocexprlemss 7898 . . . . . . . . . . . 12  |-  ( ph  ->  A  C_  P. )
2015, 19ssexd 4223 . . . . . . . . . . 11  |-  ( ph  ->  A  e.  _V )
21 fo1st 6301 . . . . . . . . . . . . 13  |-  1st : _V -onto-> _V
22 fofun 5548 . . . . . . . . . . . . 13  |-  ( 1st
: _V -onto-> _V  ->  Fun 
1st )
2321, 22ax-mp 5 . . . . . . . . . . . 12  |-  Fun  1st
24 funimaexg 5404 . . . . . . . . . . . 12  |-  ( ( Fun  1st  /\  A  e. 
_V )  ->  ( 1st " A )  e. 
_V )
2523, 24mpan 424 . . . . . . . . . . 11  |-  ( A  e.  _V  ->  ( 1st " A )  e. 
_V )
26 uniexg 4529 . . . . . . . . . . 11  |-  ( ( 1st " A )  e.  _V  ->  U. ( 1st " A )  e. 
_V )
2720, 25, 263syl 17 . . . . . . . . . 10  |-  ( ph  ->  U. ( 1st " A
)  e.  _V )
28 nqex 7546 . . . . . . . . . . 11  |-  Q.  e.  _V
2928rabex 4227 . . . . . . . . . 10  |-  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A
) w  <Q  u }  e.  _V
30 op1stg 6294 . . . . . . . . . 10  |-  ( ( U. ( 1st " A
)  e.  _V  /\  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A ) w 
<Q  u }  e.  _V )  ->  ( 1st `  <. U. ( 1st " A
) ,  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A
) w  <Q  u } >. )  =  U. ( 1st " A ) )
3127, 29, 30sylancl 413 . . . . . . . . 9  |-  ( ph  ->  ( 1st `  <. U. ( 1st " A
) ,  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A
) w  <Q  u } >. )  =  U. ( 1st " A ) )
3213, 31eqtrid 2274 . . . . . . . 8  |-  ( ph  ->  ( 1st `  B
)  =  U. ( 1st " A ) )
3332eleq2d 2299 . . . . . . 7  |-  ( ph  ->  ( s  e.  ( 1st `  B )  <-> 
s  e.  U. ( 1st " A ) ) )
3433ad2antrr 488 . . . . . 6  |-  ( ( ( ph  /\  y  <P  B )  /\  (
s  e.  Q.  /\  ( s  e.  ( 2nd `  y )  /\  s  e.  ( 1st `  B ) ) ) )  -> 
( s  e.  ( 1st `  B )  <-> 
s  e.  U. ( 1st " A ) ) )
3511, 34mpbid 147 . . . . 5  |-  ( ( ( ph  /\  y  <P  B )  /\  (
s  e.  Q.  /\  ( s  e.  ( 2nd `  y )  /\  s  e.  ( 1st `  B ) ) ) )  -> 
s  e.  U. ( 1st " A ) )
36 suplocexprlemell 7896 . . . . 5  |-  ( s  e.  U. ( 1st " A )  <->  E. z  e.  A  s  e.  ( 1st `  z ) )
3735, 36sylib 122 . . . 4  |-  ( ( ( ph  /\  y  <P  B )  /\  (
s  e.  Q.  /\  ( s  e.  ( 2nd `  y )  /\  s  e.  ( 1st `  B ) ) ) )  ->  E. z  e.  A  s  e.  ( 1st `  z ) )
38 simprl 529 . . . . . . . . 9  |-  ( ( ( ph  /\  y  <P  B )  /\  (
s  e.  Q.  /\  ( s  e.  ( 2nd `  y )  /\  s  e.  ( 1st `  B ) ) ) )  -> 
s  e.  Q. )
3938ad2antrr 488 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  y  <P  B )  /\  ( s  e.  Q.  /\  ( s  e.  ( 2nd `  y )  /\  s  e.  ( 1st `  B ) ) ) )  /\  z  e.  A )  /\  s  e.  ( 1st `  z ) )  ->  s  e.  Q. )
40 simprrl 539 . . . . . . . . 9  |-  ( ( ( ph  /\  y  <P  B )  /\  (
s  e.  Q.  /\  ( s  e.  ( 2nd `  y )  /\  s  e.  ( 1st `  B ) ) ) )  -> 
s  e.  ( 2nd `  y ) )
4140ad2antrr 488 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  y  <P  B )  /\  ( s  e.  Q.  /\  ( s  e.  ( 2nd `  y )  /\  s  e.  ( 1st `  B ) ) ) )  /\  z  e.  A )  /\  s  e.  ( 1st `  z ) )  ->  s  e.  ( 2nd `  y ) )
42 simpr 110 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  y  <P  B )  /\  ( s  e.  Q.  /\  ( s  e.  ( 2nd `  y )  /\  s  e.  ( 1st `  B ) ) ) )  /\  z  e.  A )  /\  s  e.  ( 1st `  z ) )  ->  s  e.  ( 1st `  z ) )
43 rspe 2579 . . . . . . . 8  |-  ( ( s  e.  Q.  /\  ( s  e.  ( 2nd `  y )  /\  s  e.  ( 1st `  z ) ) )  ->  E. s  e.  Q.  ( s  e.  ( 2nd `  y
)  /\  s  e.  ( 1st `  z ) ) )
4439, 41, 42, 43syl12anc 1269 . . . . . . 7  |-  ( ( ( ( ( ph  /\  y  <P  B )  /\  ( s  e.  Q.  /\  ( s  e.  ( 2nd `  y )  /\  s  e.  ( 1st `  B ) ) ) )  /\  z  e.  A )  /\  s  e.  ( 1st `  z ) )  ->  E. s  e.  Q.  ( s  e.  ( 2nd `  y )  /\  s  e.  ( 1st `  z ) ) )
454ad4antlr 495 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  y  <P  B )  /\  ( s  e.  Q.  /\  ( s  e.  ( 2nd `  y )  /\  s  e.  ( 1st `  B ) ) ) )  /\  z  e.  A )  /\  s  e.  ( 1st `  z ) )  ->  y  e.  P. )
4619ad4antr 494 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  y  <P  B )  /\  ( s  e.  Q.  /\  ( s  e.  ( 2nd `  y )  /\  s  e.  ( 1st `  B ) ) ) )  /\  z  e.  A )  /\  s  e.  ( 1st `  z ) )  ->  A  C_  P. )
47 simplr 528 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  y  <P  B )  /\  ( s  e.  Q.  /\  ( s  e.  ( 2nd `  y )  /\  s  e.  ( 1st `  B ) ) ) )  /\  z  e.  A )  /\  s  e.  ( 1st `  z ) )  ->  z  e.  A
)
4846, 47sseldd 3225 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  y  <P  B )  /\  ( s  e.  Q.  /\  ( s  e.  ( 2nd `  y )  /\  s  e.  ( 1st `  B ) ) ) )  /\  z  e.  A )  /\  s  e.  ( 1st `  z ) )  ->  z  e.  P. )
49 ltdfpr 7689 . . . . . . . 8  |-  ( ( y  e.  P.  /\  z  e.  P. )  ->  ( y  <P  z  <->  E. s  e.  Q.  (
s  e.  ( 2nd `  y )  /\  s  e.  ( 1st `  z
) ) ) )
5045, 48, 49syl2anc 411 . . . . . . 7  |-  ( ( ( ( ( ph  /\  y  <P  B )  /\  ( s  e.  Q.  /\  ( s  e.  ( 2nd `  y )  /\  s  e.  ( 1st `  B ) ) ) )  /\  z  e.  A )  /\  s  e.  ( 1st `  z ) )  ->  ( y  <P 
z  <->  E. s  e.  Q.  ( s  e.  ( 2nd `  y )  /\  s  e.  ( 1st `  z ) ) ) )
5144, 50mpbird 167 . . . . . 6  |-  ( ( ( ( ( ph  /\  y  <P  B )  /\  ( s  e.  Q.  /\  ( s  e.  ( 2nd `  y )  /\  s  e.  ( 1st `  B ) ) ) )  /\  z  e.  A )  /\  s  e.  ( 1st `  z ) )  ->  y  <P  z
)
5251ex 115 . . . . 5  |-  ( ( ( ( ph  /\  y  <P  B )  /\  ( s  e.  Q.  /\  ( s  e.  ( 2nd `  y )  /\  s  e.  ( 1st `  B ) ) ) )  /\  z  e.  A )  ->  ( s  e.  ( 1st `  z )  ->  y  <P  z
) )
5352reximdva 2632 . . . 4  |-  ( ( ( ph  /\  y  <P  B )  /\  (
s  e.  Q.  /\  ( s  e.  ( 2nd `  y )  /\  s  e.  ( 1st `  B ) ) ) )  -> 
( E. z  e.  A  s  e.  ( 1st `  z )  ->  E. z  e.  A  y  <P  z ) )
5437, 53mpd 13 . . 3  |-  ( ( ( ph  /\  y  <P  B )  /\  (
s  e.  Q.  /\  ( s  e.  ( 2nd `  y )  /\  s  e.  ( 1st `  B ) ) ) )  ->  E. z  e.  A  y  <P  z )
5510, 54rexlimddv 2653 . 2  |-  ( (
ph  /\  y  <P  B )  ->  E. z  e.  A  y  <P  z )
5655ex 115 1  |-  ( ph  ->  ( y  <P  B  ->  E. z  e.  A  y  <P  z ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 713    = wceq 1395   E.wex 1538    e. wcel 2200   A.wral 2508   E.wrex 2509   {crab 2512   _Vcvv 2799    C_ wss 3197   <.cop 3669   U.cuni 3887   |^|cint 3922   class class class wbr 4082   "cima 4721   Fun wfun 5311   -onto->wfo 5315   ` cfv 5317   1stc1st 6282   2ndc2nd 6283   Q.cnq 7463    <Q cltq 7468   P.cnp 7474    <P cltp 7478
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-iinf 4679
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-1st 6284  df-qs 6684  df-ni 7487  df-nqqs 7531  df-inp 7649  df-iltp 7653
This theorem is referenced by:  suplocexpr  7908
  Copyright terms: Public domain W3C validator