| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > suplocexprlemlub | Unicode version | ||
| Description: Lemma for suplocexpr 7908. The putative supremum is a least upper bound. (Contributed by Jim Kingdon, 14-Jan-2024.) |
| Ref | Expression |
|---|---|
| suplocexpr.m |
|
| suplocexpr.ub |
|
| suplocexpr.loc |
|
| suplocexpr.b |
|
| Ref | Expression |
|---|---|
| suplocexprlemlub |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 110 |
. . . 4
| |
| 2 | ltrelpr 7688 |
. . . . . . . 8
| |
| 3 | 2 | brel 4770 |
. . . . . . 7
|
| 4 | 3 | simpld 112 |
. . . . . 6
|
| 5 | 4 | adantl 277 |
. . . . 5
|
| 6 | 3 | simprd 114 |
. . . . . 6
|
| 7 | 6 | adantl 277 |
. . . . 5
|
| 8 | ltdfpr 7689 |
. . . . 5
| |
| 9 | 5, 7, 8 | syl2anc 411 |
. . . 4
|
| 10 | 1, 9 | mpbid 147 |
. . 3
|
| 11 | simprrr 540 |
. . . . . 6
| |
| 12 | suplocexpr.b |
. . . . . . . . . 10
| |
| 13 | 12 | fveq2i 5629 |
. . . . . . . . 9
|
| 14 | npex 7656 |
. . . . . . . . . . . . 13
| |
| 15 | 14 | a1i 9 |
. . . . . . . . . . . 12
|
| 16 | suplocexpr.m |
. . . . . . . . . . . . 13
| |
| 17 | suplocexpr.ub |
. . . . . . . . . . . . 13
| |
| 18 | suplocexpr.loc |
. . . . . . . . . . . . 13
| |
| 19 | 16, 17, 18 | suplocexprlemss 7898 |
. . . . . . . . . . . 12
|
| 20 | 15, 19 | ssexd 4223 |
. . . . . . . . . . 11
|
| 21 | fo1st 6301 |
. . . . . . . . . . . . 13
| |
| 22 | fofun 5548 |
. . . . . . . . . . . . 13
| |
| 23 | 21, 22 | ax-mp 5 |
. . . . . . . . . . . 12
|
| 24 | funimaexg 5404 |
. . . . . . . . . . . 12
| |
| 25 | 23, 24 | mpan 424 |
. . . . . . . . . . 11
|
| 26 | uniexg 4529 |
. . . . . . . . . . 11
| |
| 27 | 20, 25, 26 | 3syl 17 |
. . . . . . . . . 10
|
| 28 | nqex 7546 |
. . . . . . . . . . 11
| |
| 29 | 28 | rabex 4227 |
. . . . . . . . . 10
|
| 30 | op1stg 6294 |
. . . . . . . . . 10
| |
| 31 | 27, 29, 30 | sylancl 413 |
. . . . . . . . 9
|
| 32 | 13, 31 | eqtrid 2274 |
. . . . . . . 8
|
| 33 | 32 | eleq2d 2299 |
. . . . . . 7
|
| 34 | 33 | ad2antrr 488 |
. . . . . 6
|
| 35 | 11, 34 | mpbid 147 |
. . . . 5
|
| 36 | suplocexprlemell 7896 |
. . . . 5
| |
| 37 | 35, 36 | sylib 122 |
. . . 4
|
| 38 | simprl 529 |
. . . . . . . . 9
| |
| 39 | 38 | ad2antrr 488 |
. . . . . . . 8
|
| 40 | simprrl 539 |
. . . . . . . . 9
| |
| 41 | 40 | ad2antrr 488 |
. . . . . . . 8
|
| 42 | simpr 110 |
. . . . . . . 8
| |
| 43 | rspe 2579 |
. . . . . . . 8
| |
| 44 | 39, 41, 42, 43 | syl12anc 1269 |
. . . . . . 7
|
| 45 | 4 | ad4antlr 495 |
. . . . . . . 8
|
| 46 | 19 | ad4antr 494 |
. . . . . . . . 9
|
| 47 | simplr 528 |
. . . . . . . . 9
| |
| 48 | 46, 47 | sseldd 3225 |
. . . . . . . 8
|
| 49 | ltdfpr 7689 |
. . . . . . . 8
| |
| 50 | 45, 48, 49 | syl2anc 411 |
. . . . . . 7
|
| 51 | 44, 50 | mpbird 167 |
. . . . . 6
|
| 52 | 51 | ex 115 |
. . . . 5
|
| 53 | 52 | reximdva 2632 |
. . . 4
|
| 54 | 37, 53 | mpd 13 |
. . 3
|
| 55 | 10, 54 | rexlimddv 2653 |
. 2
|
| 56 | 55 | ex 115 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-iinf 4679 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-iom 4682 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-1st 6284 df-qs 6684 df-ni 7487 df-nqqs 7531 df-inp 7649 df-iltp 7653 |
| This theorem is referenced by: suplocexpr 7908 |
| Copyright terms: Public domain | W3C validator |