ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  suplocexprlemlub Unicode version

Theorem suplocexprlemlub 7673
Description: Lemma for suplocexpr 7674. The putative supremum is a least upper bound. (Contributed by Jim Kingdon, 14-Jan-2024.)
Hypotheses
Ref Expression
suplocexpr.m  |-  ( ph  ->  E. x  x  e.  A )
suplocexpr.ub  |-  ( ph  ->  E. x  e.  P.  A. y  e.  A  y 
<P  x )
suplocexpr.loc  |-  ( ph  ->  A. x  e.  P.  A. y  e.  P.  (
x  <P  y  ->  ( E. z  e.  A  x  <P  z  \/  A. z  e.  A  z  <P  y ) ) )
suplocexpr.b  |-  B  = 
<. U. ( 1st " A
) ,  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A
) w  <Q  u } >.
Assertion
Ref Expression
suplocexprlemlub  |-  ( ph  ->  ( y  <P  B  ->  E. z  e.  A  y  <P  z ) )
Distinct variable groups:    y, A, z   
x, A, y    z, B    ph, y, z    ph, x
Allowed substitution hints:    ph( w, u)    A( w, u)    B( x, y, w, u)

Proof of Theorem suplocexprlemlub
Dummy variable  s is distinct from all other variables.
StepHypRef Expression
1 simpr 109 . . . 4  |-  ( (
ph  /\  y  <P  B )  ->  y  <P  B )
2 ltrelpr 7454 . . . . . . . 8  |-  <P  C_  ( P.  X.  P. )
32brel 4661 . . . . . . 7  |-  ( y 
<P  B  ->  ( y  e.  P.  /\  B  e.  P. ) )
43simpld 111 . . . . . 6  |-  ( y 
<P  B  ->  y  e. 
P. )
54adantl 275 . . . . 5  |-  ( (
ph  /\  y  <P  B )  ->  y  e.  P. )
63simprd 113 . . . . . 6  |-  ( y 
<P  B  ->  B  e. 
P. )
76adantl 275 . . . . 5  |-  ( (
ph  /\  y  <P  B )  ->  B  e.  P. )
8 ltdfpr 7455 . . . . 5  |-  ( ( y  e.  P.  /\  B  e.  P. )  ->  ( y  <P  B  <->  E. s  e.  Q.  ( s  e.  ( 2nd `  y
)  /\  s  e.  ( 1st `  B ) ) ) )
95, 7, 8syl2anc 409 . . . 4  |-  ( (
ph  /\  y  <P  B )  ->  ( y  <P  B  <->  E. s  e.  Q.  ( s  e.  ( 2nd `  y )  /\  s  e.  ( 1st `  B ) ) ) )
101, 9mpbid 146 . . 3  |-  ( (
ph  /\  y  <P  B )  ->  E. s  e.  Q.  ( s  e.  ( 2nd `  y
)  /\  s  e.  ( 1st `  B ) ) )
11 simprrr 535 . . . . . 6  |-  ( ( ( ph  /\  y  <P  B )  /\  (
s  e.  Q.  /\  ( s  e.  ( 2nd `  y )  /\  s  e.  ( 1st `  B ) ) ) )  -> 
s  e.  ( 1st `  B ) )
12 suplocexpr.b . . . . . . . . . 10  |-  B  = 
<. U. ( 1st " A
) ,  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A
) w  <Q  u } >.
1312fveq2i 5497 . . . . . . . . 9  |-  ( 1st `  B )  =  ( 1st `  <. U. ( 1st " A ) ,  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A ) w  <Q  u } >. )
14 npex 7422 . . . . . . . . . . . . 13  |-  P.  e.  _V
1514a1i 9 . . . . . . . . . . . 12  |-  ( ph  ->  P.  e.  _V )
16 suplocexpr.m . . . . . . . . . . . . 13  |-  ( ph  ->  E. x  x  e.  A )
17 suplocexpr.ub . . . . . . . . . . . . 13  |-  ( ph  ->  E. x  e.  P.  A. y  e.  A  y 
<P  x )
18 suplocexpr.loc . . . . . . . . . . . . 13  |-  ( ph  ->  A. x  e.  P.  A. y  e.  P.  (
x  <P  y  ->  ( E. z  e.  A  x  <P  z  \/  A. z  e.  A  z  <P  y ) ) )
1916, 17, 18suplocexprlemss 7664 . . . . . . . . . . . 12  |-  ( ph  ->  A  C_  P. )
2015, 19ssexd 4127 . . . . . . . . . . 11  |-  ( ph  ->  A  e.  _V )
21 fo1st 6133 . . . . . . . . . . . . 13  |-  1st : _V -onto-> _V
22 fofun 5419 . . . . . . . . . . . . 13  |-  ( 1st
: _V -onto-> _V  ->  Fun 
1st )
2321, 22ax-mp 5 . . . . . . . . . . . 12  |-  Fun  1st
24 funimaexg 5280 . . . . . . . . . . . 12  |-  ( ( Fun  1st  /\  A  e. 
_V )  ->  ( 1st " A )  e. 
_V )
2523, 24mpan 422 . . . . . . . . . . 11  |-  ( A  e.  _V  ->  ( 1st " A )  e. 
_V )
26 uniexg 4422 . . . . . . . . . . 11  |-  ( ( 1st " A )  e.  _V  ->  U. ( 1st " A )  e. 
_V )
2720, 25, 263syl 17 . . . . . . . . . 10  |-  ( ph  ->  U. ( 1st " A
)  e.  _V )
28 nqex 7312 . . . . . . . . . . 11  |-  Q.  e.  _V
2928rabex 4131 . . . . . . . . . 10  |-  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A
) w  <Q  u }  e.  _V
30 op1stg 6126 . . . . . . . . . 10  |-  ( ( U. ( 1st " A
)  e.  _V  /\  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A ) w 
<Q  u }  e.  _V )  ->  ( 1st `  <. U. ( 1st " A
) ,  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A
) w  <Q  u } >. )  =  U. ( 1st " A ) )
3127, 29, 30sylancl 411 . . . . . . . . 9  |-  ( ph  ->  ( 1st `  <. U. ( 1st " A
) ,  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A
) w  <Q  u } >. )  =  U. ( 1st " A ) )
3213, 31eqtrid 2215 . . . . . . . 8  |-  ( ph  ->  ( 1st `  B
)  =  U. ( 1st " A ) )
3332eleq2d 2240 . . . . . . 7  |-  ( ph  ->  ( s  e.  ( 1st `  B )  <-> 
s  e.  U. ( 1st " A ) ) )
3433ad2antrr 485 . . . . . 6  |-  ( ( ( ph  /\  y  <P  B )  /\  (
s  e.  Q.  /\  ( s  e.  ( 2nd `  y )  /\  s  e.  ( 1st `  B ) ) ) )  -> 
( s  e.  ( 1st `  B )  <-> 
s  e.  U. ( 1st " A ) ) )
3511, 34mpbid 146 . . . . 5  |-  ( ( ( ph  /\  y  <P  B )  /\  (
s  e.  Q.  /\  ( s  e.  ( 2nd `  y )  /\  s  e.  ( 1st `  B ) ) ) )  -> 
s  e.  U. ( 1st " A ) )
36 suplocexprlemell 7662 . . . . 5  |-  ( s  e.  U. ( 1st " A )  <->  E. z  e.  A  s  e.  ( 1st `  z ) )
3735, 36sylib 121 . . . 4  |-  ( ( ( ph  /\  y  <P  B )  /\  (
s  e.  Q.  /\  ( s  e.  ( 2nd `  y )  /\  s  e.  ( 1st `  B ) ) ) )  ->  E. z  e.  A  s  e.  ( 1st `  z ) )
38 simprl 526 . . . . . . . . 9  |-  ( ( ( ph  /\  y  <P  B )  /\  (
s  e.  Q.  /\  ( s  e.  ( 2nd `  y )  /\  s  e.  ( 1st `  B ) ) ) )  -> 
s  e.  Q. )
3938ad2antrr 485 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  y  <P  B )  /\  ( s  e.  Q.  /\  ( s  e.  ( 2nd `  y )  /\  s  e.  ( 1st `  B ) ) ) )  /\  z  e.  A )  /\  s  e.  ( 1st `  z ) )  ->  s  e.  Q. )
40 simprrl 534 . . . . . . . . 9  |-  ( ( ( ph  /\  y  <P  B )  /\  (
s  e.  Q.  /\  ( s  e.  ( 2nd `  y )  /\  s  e.  ( 1st `  B ) ) ) )  -> 
s  e.  ( 2nd `  y ) )
4140ad2antrr 485 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  y  <P  B )  /\  ( s  e.  Q.  /\  ( s  e.  ( 2nd `  y )  /\  s  e.  ( 1st `  B ) ) ) )  /\  z  e.  A )  /\  s  e.  ( 1st `  z ) )  ->  s  e.  ( 2nd `  y ) )
42 simpr 109 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  y  <P  B )  /\  ( s  e.  Q.  /\  ( s  e.  ( 2nd `  y )  /\  s  e.  ( 1st `  B ) ) ) )  /\  z  e.  A )  /\  s  e.  ( 1st `  z ) )  ->  s  e.  ( 1st `  z ) )
43 rspe 2519 . . . . . . . 8  |-  ( ( s  e.  Q.  /\  ( s  e.  ( 2nd `  y )  /\  s  e.  ( 1st `  z ) ) )  ->  E. s  e.  Q.  ( s  e.  ( 2nd `  y
)  /\  s  e.  ( 1st `  z ) ) )
4439, 41, 42, 43syl12anc 1231 . . . . . . 7  |-  ( ( ( ( ( ph  /\  y  <P  B )  /\  ( s  e.  Q.  /\  ( s  e.  ( 2nd `  y )  /\  s  e.  ( 1st `  B ) ) ) )  /\  z  e.  A )  /\  s  e.  ( 1st `  z ) )  ->  E. s  e.  Q.  ( s  e.  ( 2nd `  y )  /\  s  e.  ( 1st `  z ) ) )
454ad4antlr 492 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  y  <P  B )  /\  ( s  e.  Q.  /\  ( s  e.  ( 2nd `  y )  /\  s  e.  ( 1st `  B ) ) ) )  /\  z  e.  A )  /\  s  e.  ( 1st `  z ) )  ->  y  e.  P. )
4619ad4antr 491 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  y  <P  B )  /\  ( s  e.  Q.  /\  ( s  e.  ( 2nd `  y )  /\  s  e.  ( 1st `  B ) ) ) )  /\  z  e.  A )  /\  s  e.  ( 1st `  z ) )  ->  A  C_  P. )
47 simplr 525 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  y  <P  B )  /\  ( s  e.  Q.  /\  ( s  e.  ( 2nd `  y )  /\  s  e.  ( 1st `  B ) ) ) )  /\  z  e.  A )  /\  s  e.  ( 1st `  z ) )  ->  z  e.  A
)
4846, 47sseldd 3148 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  y  <P  B )  /\  ( s  e.  Q.  /\  ( s  e.  ( 2nd `  y )  /\  s  e.  ( 1st `  B ) ) ) )  /\  z  e.  A )  /\  s  e.  ( 1st `  z ) )  ->  z  e.  P. )
49 ltdfpr 7455 . . . . . . . 8  |-  ( ( y  e.  P.  /\  z  e.  P. )  ->  ( y  <P  z  <->  E. s  e.  Q.  (
s  e.  ( 2nd `  y )  /\  s  e.  ( 1st `  z
) ) ) )
5045, 48, 49syl2anc 409 . . . . . . 7  |-  ( ( ( ( ( ph  /\  y  <P  B )  /\  ( s  e.  Q.  /\  ( s  e.  ( 2nd `  y )  /\  s  e.  ( 1st `  B ) ) ) )  /\  z  e.  A )  /\  s  e.  ( 1st `  z ) )  ->  ( y  <P 
z  <->  E. s  e.  Q.  ( s  e.  ( 2nd `  y )  /\  s  e.  ( 1st `  z ) ) ) )
5144, 50mpbird 166 . . . . . 6  |-  ( ( ( ( ( ph  /\  y  <P  B )  /\  ( s  e.  Q.  /\  ( s  e.  ( 2nd `  y )  /\  s  e.  ( 1st `  B ) ) ) )  /\  z  e.  A )  /\  s  e.  ( 1st `  z ) )  ->  y  <P  z
)
5251ex 114 . . . . 5  |-  ( ( ( ( ph  /\  y  <P  B )  /\  ( s  e.  Q.  /\  ( s  e.  ( 2nd `  y )  /\  s  e.  ( 1st `  B ) ) ) )  /\  z  e.  A )  ->  ( s  e.  ( 1st `  z )  ->  y  <P  z
) )
5352reximdva 2572 . . . 4  |-  ( ( ( ph  /\  y  <P  B )  /\  (
s  e.  Q.  /\  ( s  e.  ( 2nd `  y )  /\  s  e.  ( 1st `  B ) ) ) )  -> 
( E. z  e.  A  s  e.  ( 1st `  z )  ->  E. z  e.  A  y  <P  z ) )
5437, 53mpd 13 . . 3  |-  ( ( ( ph  /\  y  <P  B )  /\  (
s  e.  Q.  /\  ( s  e.  ( 2nd `  y )  /\  s  e.  ( 1st `  B ) ) ) )  ->  E. z  e.  A  y  <P  z )
5510, 54rexlimddv 2592 . 2  |-  ( (
ph  /\  y  <P  B )  ->  E. z  e.  A  y  <P  z )
5655ex 114 1  |-  ( ph  ->  ( y  <P  B  ->  E. z  e.  A  y  <P  z ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 703    = wceq 1348   E.wex 1485    e. wcel 2141   A.wral 2448   E.wrex 2449   {crab 2452   _Vcvv 2730    C_ wss 3121   <.cop 3584   U.cuni 3794   |^|cint 3829   class class class wbr 3987   "cima 4612   Fun wfun 5190   -onto->wfo 5194   ` cfv 5196   1stc1st 6114   2ndc2nd 6115   Q.cnq 7229    <Q cltq 7234   P.cnp 7240    <P cltp 7244
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4102  ax-sep 4105  ax-pow 4158  ax-pr 4192  ax-un 4416  ax-iinf 4570
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-int 3830  df-iun 3873  df-br 3988  df-opab 4049  df-mpt 4050  df-id 4276  df-iom 4573  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-res 4621  df-ima 4622  df-iota 5158  df-fun 5198  df-fn 5199  df-f 5200  df-f1 5201  df-fo 5202  df-f1o 5203  df-fv 5204  df-1st 6116  df-qs 6515  df-ni 7253  df-nqqs 7297  df-inp 7415  df-iltp 7419
This theorem is referenced by:  suplocexpr  7674
  Copyright terms: Public domain W3C validator