| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > suplocexprlemlub | Unicode version | ||
| Description: Lemma for suplocexpr 7873. The putative supremum is a least upper bound. (Contributed by Jim Kingdon, 14-Jan-2024.) |
| Ref | Expression |
|---|---|
| suplocexpr.m |
|
| suplocexpr.ub |
|
| suplocexpr.loc |
|
| suplocexpr.b |
|
| Ref | Expression |
|---|---|
| suplocexprlemlub |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 110 |
. . . 4
| |
| 2 | ltrelpr 7653 |
. . . . . . . 8
| |
| 3 | 2 | brel 4745 |
. . . . . . 7
|
| 4 | 3 | simpld 112 |
. . . . . 6
|
| 5 | 4 | adantl 277 |
. . . . 5
|
| 6 | 3 | simprd 114 |
. . . . . 6
|
| 7 | 6 | adantl 277 |
. . . . 5
|
| 8 | ltdfpr 7654 |
. . . . 5
| |
| 9 | 5, 7, 8 | syl2anc 411 |
. . . 4
|
| 10 | 1, 9 | mpbid 147 |
. . 3
|
| 11 | simprrr 540 |
. . . . . 6
| |
| 12 | suplocexpr.b |
. . . . . . . . . 10
| |
| 13 | 12 | fveq2i 5602 |
. . . . . . . . 9
|
| 14 | npex 7621 |
. . . . . . . . . . . . 13
| |
| 15 | 14 | a1i 9 |
. . . . . . . . . . . 12
|
| 16 | suplocexpr.m |
. . . . . . . . . . . . 13
| |
| 17 | suplocexpr.ub |
. . . . . . . . . . . . 13
| |
| 18 | suplocexpr.loc |
. . . . . . . . . . . . 13
| |
| 19 | 16, 17, 18 | suplocexprlemss 7863 |
. . . . . . . . . . . 12
|
| 20 | 15, 19 | ssexd 4200 |
. . . . . . . . . . 11
|
| 21 | fo1st 6266 |
. . . . . . . . . . . . 13
| |
| 22 | fofun 5521 |
. . . . . . . . . . . . 13
| |
| 23 | 21, 22 | ax-mp 5 |
. . . . . . . . . . . 12
|
| 24 | funimaexg 5377 |
. . . . . . . . . . . 12
| |
| 25 | 23, 24 | mpan 424 |
. . . . . . . . . . 11
|
| 26 | uniexg 4504 |
. . . . . . . . . . 11
| |
| 27 | 20, 25, 26 | 3syl 17 |
. . . . . . . . . 10
|
| 28 | nqex 7511 |
. . . . . . . . . . 11
| |
| 29 | 28 | rabex 4204 |
. . . . . . . . . 10
|
| 30 | op1stg 6259 |
. . . . . . . . . 10
| |
| 31 | 27, 29, 30 | sylancl 413 |
. . . . . . . . 9
|
| 32 | 13, 31 | eqtrid 2252 |
. . . . . . . 8
|
| 33 | 32 | eleq2d 2277 |
. . . . . . 7
|
| 34 | 33 | ad2antrr 488 |
. . . . . 6
|
| 35 | 11, 34 | mpbid 147 |
. . . . 5
|
| 36 | suplocexprlemell 7861 |
. . . . 5
| |
| 37 | 35, 36 | sylib 122 |
. . . 4
|
| 38 | simprl 529 |
. . . . . . . . 9
| |
| 39 | 38 | ad2antrr 488 |
. . . . . . . 8
|
| 40 | simprrl 539 |
. . . . . . . . 9
| |
| 41 | 40 | ad2antrr 488 |
. . . . . . . 8
|
| 42 | simpr 110 |
. . . . . . . 8
| |
| 43 | rspe 2557 |
. . . . . . . 8
| |
| 44 | 39, 41, 42, 43 | syl12anc 1248 |
. . . . . . 7
|
| 45 | 4 | ad4antlr 495 |
. . . . . . . 8
|
| 46 | 19 | ad4antr 494 |
. . . . . . . . 9
|
| 47 | simplr 528 |
. . . . . . . . 9
| |
| 48 | 46, 47 | sseldd 3202 |
. . . . . . . 8
|
| 49 | ltdfpr 7654 |
. . . . . . . 8
| |
| 50 | 45, 48, 49 | syl2anc 411 |
. . . . . . 7
|
| 51 | 44, 50 | mpbird 167 |
. . . . . 6
|
| 52 | 51 | ex 115 |
. . . . 5
|
| 53 | 52 | reximdva 2610 |
. . . 4
|
| 54 | 37, 53 | mpd 13 |
. . 3
|
| 55 | 10, 54 | rexlimddv 2630 |
. 2
|
| 56 | 55 | ex 115 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-iinf 4654 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-iom 4657 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-1st 6249 df-qs 6649 df-ni 7452 df-nqqs 7496 df-inp 7614 df-iltp 7618 |
| This theorem is referenced by: suplocexpr 7873 |
| Copyright terms: Public domain | W3C validator |