| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > suplocexprlemlub | Unicode version | ||
| Description: Lemma for suplocexpr 7809. The putative supremum is a least upper bound. (Contributed by Jim Kingdon, 14-Jan-2024.) |
| Ref | Expression |
|---|---|
| suplocexpr.m |
|
| suplocexpr.ub |
|
| suplocexpr.loc |
|
| suplocexpr.b |
|
| Ref | Expression |
|---|---|
| suplocexprlemlub |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 110 |
. . . 4
| |
| 2 | ltrelpr 7589 |
. . . . . . . 8
| |
| 3 | 2 | brel 4716 |
. . . . . . 7
|
| 4 | 3 | simpld 112 |
. . . . . 6
|
| 5 | 4 | adantl 277 |
. . . . 5
|
| 6 | 3 | simprd 114 |
. . . . . 6
|
| 7 | 6 | adantl 277 |
. . . . 5
|
| 8 | ltdfpr 7590 |
. . . . 5
| |
| 9 | 5, 7, 8 | syl2anc 411 |
. . . 4
|
| 10 | 1, 9 | mpbid 147 |
. . 3
|
| 11 | simprrr 540 |
. . . . . 6
| |
| 12 | suplocexpr.b |
. . . . . . . . . 10
| |
| 13 | 12 | fveq2i 5564 |
. . . . . . . . 9
|
| 14 | npex 7557 |
. . . . . . . . . . . . 13
| |
| 15 | 14 | a1i 9 |
. . . . . . . . . . . 12
|
| 16 | suplocexpr.m |
. . . . . . . . . . . . 13
| |
| 17 | suplocexpr.ub |
. . . . . . . . . . . . 13
| |
| 18 | suplocexpr.loc |
. . . . . . . . . . . . 13
| |
| 19 | 16, 17, 18 | suplocexprlemss 7799 |
. . . . . . . . . . . 12
|
| 20 | 15, 19 | ssexd 4174 |
. . . . . . . . . . 11
|
| 21 | fo1st 6224 |
. . . . . . . . . . . . 13
| |
| 22 | fofun 5484 |
. . . . . . . . . . . . 13
| |
| 23 | 21, 22 | ax-mp 5 |
. . . . . . . . . . . 12
|
| 24 | funimaexg 5343 |
. . . . . . . . . . . 12
| |
| 25 | 23, 24 | mpan 424 |
. . . . . . . . . . 11
|
| 26 | uniexg 4475 |
. . . . . . . . . . 11
| |
| 27 | 20, 25, 26 | 3syl 17 |
. . . . . . . . . 10
|
| 28 | nqex 7447 |
. . . . . . . . . . 11
| |
| 29 | 28 | rabex 4178 |
. . . . . . . . . 10
|
| 30 | op1stg 6217 |
. . . . . . . . . 10
| |
| 31 | 27, 29, 30 | sylancl 413 |
. . . . . . . . 9
|
| 32 | 13, 31 | eqtrid 2241 |
. . . . . . . 8
|
| 33 | 32 | eleq2d 2266 |
. . . . . . 7
|
| 34 | 33 | ad2antrr 488 |
. . . . . 6
|
| 35 | 11, 34 | mpbid 147 |
. . . . 5
|
| 36 | suplocexprlemell 7797 |
. . . . 5
| |
| 37 | 35, 36 | sylib 122 |
. . . 4
|
| 38 | simprl 529 |
. . . . . . . . 9
| |
| 39 | 38 | ad2antrr 488 |
. . . . . . . 8
|
| 40 | simprrl 539 |
. . . . . . . . 9
| |
| 41 | 40 | ad2antrr 488 |
. . . . . . . 8
|
| 42 | simpr 110 |
. . . . . . . 8
| |
| 43 | rspe 2546 |
. . . . . . . 8
| |
| 44 | 39, 41, 42, 43 | syl12anc 1247 |
. . . . . . 7
|
| 45 | 4 | ad4antlr 495 |
. . . . . . . 8
|
| 46 | 19 | ad4antr 494 |
. . . . . . . . 9
|
| 47 | simplr 528 |
. . . . . . . . 9
| |
| 48 | 46, 47 | sseldd 3185 |
. . . . . . . 8
|
| 49 | ltdfpr 7590 |
. . . . . . . 8
| |
| 50 | 45, 48, 49 | syl2anc 411 |
. . . . . . 7
|
| 51 | 44, 50 | mpbird 167 |
. . . . . 6
|
| 52 | 51 | ex 115 |
. . . . 5
|
| 53 | 52 | reximdva 2599 |
. . . 4
|
| 54 | 37, 53 | mpd 13 |
. . 3
|
| 55 | 10, 54 | rexlimddv 2619 |
. 2
|
| 56 | 55 | ex 115 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-iinf 4625 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-1st 6207 df-qs 6607 df-ni 7388 df-nqqs 7432 df-inp 7550 df-iltp 7554 |
| This theorem is referenced by: suplocexpr 7809 |
| Copyright terms: Public domain | W3C validator |