Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > suplocexprlemlub | Unicode version |
Description: Lemma for suplocexpr 7687. The putative supremum is a least upper bound. (Contributed by Jim Kingdon, 14-Jan-2024.) |
Ref | Expression |
---|---|
suplocexpr.m | |
suplocexpr.ub | |
suplocexpr.loc | |
suplocexpr.b |
Ref | Expression |
---|---|
suplocexprlemlub |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 109 | . . . 4 | |
2 | ltrelpr 7467 | . . . . . . . 8 | |
3 | 2 | brel 4663 | . . . . . . 7 |
4 | 3 | simpld 111 | . . . . . 6 |
5 | 4 | adantl 275 | . . . . 5 |
6 | 3 | simprd 113 | . . . . . 6 |
7 | 6 | adantl 275 | . . . . 5 |
8 | ltdfpr 7468 | . . . . 5 | |
9 | 5, 7, 8 | syl2anc 409 | . . . 4 |
10 | 1, 9 | mpbid 146 | . . 3 |
11 | simprrr 535 | . . . . . 6 | |
12 | suplocexpr.b | . . . . . . . . . 10 | |
13 | 12 | fveq2i 5499 | . . . . . . . . 9 |
14 | npex 7435 | . . . . . . . . . . . . 13 | |
15 | 14 | a1i 9 | . . . . . . . . . . . 12 |
16 | suplocexpr.m | . . . . . . . . . . . . 13 | |
17 | suplocexpr.ub | . . . . . . . . . . . . 13 | |
18 | suplocexpr.loc | . . . . . . . . . . . . 13 | |
19 | 16, 17, 18 | suplocexprlemss 7677 | . . . . . . . . . . . 12 |
20 | 15, 19 | ssexd 4129 | . . . . . . . . . . 11 |
21 | fo1st 6136 | . . . . . . . . . . . . 13 | |
22 | fofun 5421 | . . . . . . . . . . . . 13 | |
23 | 21, 22 | ax-mp 5 | . . . . . . . . . . . 12 |
24 | funimaexg 5282 | . . . . . . . . . . . 12 | |
25 | 23, 24 | mpan 422 | . . . . . . . . . . 11 |
26 | uniexg 4424 | . . . . . . . . . . 11 | |
27 | 20, 25, 26 | 3syl 17 | . . . . . . . . . 10 |
28 | nqex 7325 | . . . . . . . . . . 11 | |
29 | 28 | rabex 4133 | . . . . . . . . . 10 |
30 | op1stg 6129 | . . . . . . . . . 10 | |
31 | 27, 29, 30 | sylancl 411 | . . . . . . . . 9 |
32 | 13, 31 | eqtrid 2215 | . . . . . . . 8 |
33 | 32 | eleq2d 2240 | . . . . . . 7 |
34 | 33 | ad2antrr 485 | . . . . . 6 |
35 | 11, 34 | mpbid 146 | . . . . 5 |
36 | suplocexprlemell 7675 | . . . . 5 | |
37 | 35, 36 | sylib 121 | . . . 4 |
38 | simprl 526 | . . . . . . . . 9 | |
39 | 38 | ad2antrr 485 | . . . . . . . 8 |
40 | simprrl 534 | . . . . . . . . 9 | |
41 | 40 | ad2antrr 485 | . . . . . . . 8 |
42 | simpr 109 | . . . . . . . 8 | |
43 | rspe 2519 | . . . . . . . 8 | |
44 | 39, 41, 42, 43 | syl12anc 1231 | . . . . . . 7 |
45 | 4 | ad4antlr 492 | . . . . . . . 8 |
46 | 19 | ad4antr 491 | . . . . . . . . 9 |
47 | simplr 525 | . . . . . . . . 9 | |
48 | 46, 47 | sseldd 3148 | . . . . . . . 8 |
49 | ltdfpr 7468 | . . . . . . . 8 | |
50 | 45, 48, 49 | syl2anc 409 | . . . . . . 7 |
51 | 44, 50 | mpbird 166 | . . . . . 6 |
52 | 51 | ex 114 | . . . . 5 |
53 | 52 | reximdva 2572 | . . . 4 |
54 | 37, 53 | mpd 13 | . . 3 |
55 | 10, 54 | rexlimddv 2592 | . 2 |
56 | 55 | ex 114 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wo 703 wceq 1348 wex 1485 wcel 2141 wral 2448 wrex 2449 crab 2452 cvv 2730 wss 3121 cop 3586 cuni 3796 cint 3831 class class class wbr 3989 cima 4614 wfun 5192 wfo 5196 cfv 5198 c1st 6117 c2nd 6118 cnq 7242 cltq 7247 cnp 7253 cltp 7257 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-iinf 4572 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-1st 6119 df-qs 6519 df-ni 7266 df-nqqs 7310 df-inp 7428 df-iltp 7432 |
This theorem is referenced by: suplocexpr 7687 |
Copyright terms: Public domain | W3C validator |