| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > suplocexprlemlub | Unicode version | ||
| Description: Lemma for suplocexpr 7838. The putative supremum is a least upper bound. (Contributed by Jim Kingdon, 14-Jan-2024.) |
| Ref | Expression |
|---|---|
| suplocexpr.m |
|
| suplocexpr.ub |
|
| suplocexpr.loc |
|
| suplocexpr.b |
|
| Ref | Expression |
|---|---|
| suplocexprlemlub |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 110 |
. . . 4
| |
| 2 | ltrelpr 7618 |
. . . . . . . 8
| |
| 3 | 2 | brel 4727 |
. . . . . . 7
|
| 4 | 3 | simpld 112 |
. . . . . 6
|
| 5 | 4 | adantl 277 |
. . . . 5
|
| 6 | 3 | simprd 114 |
. . . . . 6
|
| 7 | 6 | adantl 277 |
. . . . 5
|
| 8 | ltdfpr 7619 |
. . . . 5
| |
| 9 | 5, 7, 8 | syl2anc 411 |
. . . 4
|
| 10 | 1, 9 | mpbid 147 |
. . 3
|
| 11 | simprrr 540 |
. . . . . 6
| |
| 12 | suplocexpr.b |
. . . . . . . . . 10
| |
| 13 | 12 | fveq2i 5579 |
. . . . . . . . 9
|
| 14 | npex 7586 |
. . . . . . . . . . . . 13
| |
| 15 | 14 | a1i 9 |
. . . . . . . . . . . 12
|
| 16 | suplocexpr.m |
. . . . . . . . . . . . 13
| |
| 17 | suplocexpr.ub |
. . . . . . . . . . . . 13
| |
| 18 | suplocexpr.loc |
. . . . . . . . . . . . 13
| |
| 19 | 16, 17, 18 | suplocexprlemss 7828 |
. . . . . . . . . . . 12
|
| 20 | 15, 19 | ssexd 4184 |
. . . . . . . . . . 11
|
| 21 | fo1st 6243 |
. . . . . . . . . . . . 13
| |
| 22 | fofun 5499 |
. . . . . . . . . . . . 13
| |
| 23 | 21, 22 | ax-mp 5 |
. . . . . . . . . . . 12
|
| 24 | funimaexg 5358 |
. . . . . . . . . . . 12
| |
| 25 | 23, 24 | mpan 424 |
. . . . . . . . . . 11
|
| 26 | uniexg 4486 |
. . . . . . . . . . 11
| |
| 27 | 20, 25, 26 | 3syl 17 |
. . . . . . . . . 10
|
| 28 | nqex 7476 |
. . . . . . . . . . 11
| |
| 29 | 28 | rabex 4188 |
. . . . . . . . . 10
|
| 30 | op1stg 6236 |
. . . . . . . . . 10
| |
| 31 | 27, 29, 30 | sylancl 413 |
. . . . . . . . 9
|
| 32 | 13, 31 | eqtrid 2250 |
. . . . . . . 8
|
| 33 | 32 | eleq2d 2275 |
. . . . . . 7
|
| 34 | 33 | ad2antrr 488 |
. . . . . 6
|
| 35 | 11, 34 | mpbid 147 |
. . . . 5
|
| 36 | suplocexprlemell 7826 |
. . . . 5
| |
| 37 | 35, 36 | sylib 122 |
. . . 4
|
| 38 | simprl 529 |
. . . . . . . . 9
| |
| 39 | 38 | ad2antrr 488 |
. . . . . . . 8
|
| 40 | simprrl 539 |
. . . . . . . . 9
| |
| 41 | 40 | ad2antrr 488 |
. . . . . . . 8
|
| 42 | simpr 110 |
. . . . . . . 8
| |
| 43 | rspe 2555 |
. . . . . . . 8
| |
| 44 | 39, 41, 42, 43 | syl12anc 1248 |
. . . . . . 7
|
| 45 | 4 | ad4antlr 495 |
. . . . . . . 8
|
| 46 | 19 | ad4antr 494 |
. . . . . . . . 9
|
| 47 | simplr 528 |
. . . . . . . . 9
| |
| 48 | 46, 47 | sseldd 3194 |
. . . . . . . 8
|
| 49 | ltdfpr 7619 |
. . . . . . . 8
| |
| 50 | 45, 48, 49 | syl2anc 411 |
. . . . . . 7
|
| 51 | 44, 50 | mpbird 167 |
. . . . . 6
|
| 52 | 51 | ex 115 |
. . . . 5
|
| 53 | 52 | reximdva 2608 |
. . . 4
|
| 54 | 37, 53 | mpd 13 |
. . 3
|
| 55 | 10, 54 | rexlimddv 2628 |
. 2
|
| 56 | 55 | ex 115 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4159 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-iinf 4636 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-iom 4639 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 df-1st 6226 df-qs 6626 df-ni 7417 df-nqqs 7461 df-inp 7579 df-iltp 7583 |
| This theorem is referenced by: suplocexpr 7838 |
| Copyright terms: Public domain | W3C validator |