ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  suplocexprlem2b Unicode version

Theorem suplocexprlem2b 7655
Description: Lemma for suplocexpr 7666. Expression for the lower cut of the putative supremum. (Contributed by Jim Kingdon, 9-Jan-2024.)
Hypothesis
Ref Expression
suplocexprlem2b.b  |-  B  = 
<. U. ( 1st " A
) ,  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A
) w  <Q  u } >.
Assertion
Ref Expression
suplocexprlem2b  |-  ( A 
C_  P.  ->  ( 2nd `  B )  =  {
u  e.  Q.  |  E. w  e.  |^| ( 2nd " A ) w 
<Q  u } )

Proof of Theorem suplocexprlem2b
StepHypRef Expression
1 suplocexprlem2b.b . . 3  |-  B  = 
<. U. ( 1st " A
) ,  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A
) w  <Q  u } >.
21fveq2i 5489 . 2  |-  ( 2nd `  B )  =  ( 2nd `  <. U. ( 1st " A ) ,  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A ) w  <Q  u } >. )
3 fo1st 6125 . . . . . 6  |-  1st : _V -onto-> _V
4 fofun 5411 . . . . . 6  |-  ( 1st
: _V -onto-> _V  ->  Fun 
1st )
53, 4ax-mp 5 . . . . 5  |-  Fun  1st
6 npex 7414 . . . . . 6  |-  P.  e.  _V
76ssex 4119 . . . . 5  |-  ( A 
C_  P.  ->  A  e. 
_V )
8 funimaexg 5272 . . . . 5  |-  ( ( Fun  1st  /\  A  e. 
_V )  ->  ( 1st " A )  e. 
_V )
95, 7, 8sylancr 411 . . . 4  |-  ( A 
C_  P.  ->  ( 1st " A )  e.  _V )
10 uniexg 4417 . . . 4  |-  ( ( 1st " A )  e.  _V  ->  U. ( 1st " A )  e. 
_V )
119, 10syl 14 . . 3  |-  ( A 
C_  P.  ->  U. ( 1st " A )  e. 
_V )
12 nqex 7304 . . . 4  |-  Q.  e.  _V
1312rabex 4126 . . 3  |-  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A
) w  <Q  u }  e.  _V
14 op2ndg 6119 . . 3  |-  ( ( U. ( 1st " A
)  e.  _V  /\  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A ) w 
<Q  u }  e.  _V )  ->  ( 2nd `  <. U. ( 1st " A
) ,  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A
) w  <Q  u } >. )  =  {
u  e.  Q.  |  E. w  e.  |^| ( 2nd " A ) w 
<Q  u } )
1511, 13, 14sylancl 410 . 2  |-  ( A 
C_  P.  ->  ( 2nd `  <. U. ( 1st " A
) ,  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A
) w  <Q  u } >. )  =  {
u  e.  Q.  |  E. w  e.  |^| ( 2nd " A ) w 
<Q  u } )
162, 15syl5eq 2211 1  |-  ( A 
C_  P.  ->  ( 2nd `  B )  =  {
u  e.  Q.  |  E. w  e.  |^| ( 2nd " A ) w 
<Q  u } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1343    e. wcel 2136   E.wrex 2445   {crab 2448   _Vcvv 2726    C_ wss 3116   <.cop 3579   U.cuni 3789   |^|cint 3824   class class class wbr 3982   "cima 4607   Fun wfun 5182   -onto->wfo 5186   ` cfv 5188   1stc1st 6106   2ndc2nd 6107   Q.cnq 7221    <Q cltq 7226   P.cnp 7232
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-iinf 4565
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-1st 6108  df-2nd 6109  df-qs 6507  df-ni 7245  df-nqqs 7289  df-inp 7407
This theorem is referenced by:  suplocexprlemmu  7659  suplocexprlemru  7660  suplocexprlemdisj  7661  suplocexprlemloc  7662  suplocexprlemex  7663  suplocexprlemub  7664
  Copyright terms: Public domain W3C validator