ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  suplocexprlem2b Unicode version

Theorem suplocexprlem2b 7774
Description: Lemma for suplocexpr 7785. Expression for the lower cut of the putative supremum. (Contributed by Jim Kingdon, 9-Jan-2024.)
Hypothesis
Ref Expression
suplocexprlem2b.b  |-  B  = 
<. U. ( 1st " A
) ,  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A
) w  <Q  u } >.
Assertion
Ref Expression
suplocexprlem2b  |-  ( A 
C_  P.  ->  ( 2nd `  B )  =  {
u  e.  Q.  |  E. w  e.  |^| ( 2nd " A ) w 
<Q  u } )

Proof of Theorem suplocexprlem2b
StepHypRef Expression
1 suplocexprlem2b.b . . 3  |-  B  = 
<. U. ( 1st " A
) ,  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A
) w  <Q  u } >.
21fveq2i 5557 . 2  |-  ( 2nd `  B )  =  ( 2nd `  <. U. ( 1st " A ) ,  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A ) w  <Q  u } >. )
3 fo1st 6210 . . . . . 6  |-  1st : _V -onto-> _V
4 fofun 5477 . . . . . 6  |-  ( 1st
: _V -onto-> _V  ->  Fun 
1st )
53, 4ax-mp 5 . . . . 5  |-  Fun  1st
6 npex 7533 . . . . . 6  |-  P.  e.  _V
76ssex 4166 . . . . 5  |-  ( A 
C_  P.  ->  A  e. 
_V )
8 funimaexg 5338 . . . . 5  |-  ( ( Fun  1st  /\  A  e. 
_V )  ->  ( 1st " A )  e. 
_V )
95, 7, 8sylancr 414 . . . 4  |-  ( A 
C_  P.  ->  ( 1st " A )  e.  _V )
10 uniexg 4470 . . . 4  |-  ( ( 1st " A )  e.  _V  ->  U. ( 1st " A )  e. 
_V )
119, 10syl 14 . . 3  |-  ( A 
C_  P.  ->  U. ( 1st " A )  e. 
_V )
12 nqex 7423 . . . 4  |-  Q.  e.  _V
1312rabex 4173 . . 3  |-  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A
) w  <Q  u }  e.  _V
14 op2ndg 6204 . . 3  |-  ( ( U. ( 1st " A
)  e.  _V  /\  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A ) w 
<Q  u }  e.  _V )  ->  ( 2nd `  <. U. ( 1st " A
) ,  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A
) w  <Q  u } >. )  =  {
u  e.  Q.  |  E. w  e.  |^| ( 2nd " A ) w 
<Q  u } )
1511, 13, 14sylancl 413 . 2  |-  ( A 
C_  P.  ->  ( 2nd `  <. U. ( 1st " A
) ,  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A
) w  <Q  u } >. )  =  {
u  e.  Q.  |  E. w  e.  |^| ( 2nd " A ) w 
<Q  u } )
162, 15eqtrid 2238 1  |-  ( A 
C_  P.  ->  ( 2nd `  B )  =  {
u  e.  Q.  |  E. w  e.  |^| ( 2nd " A ) w 
<Q  u } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2164   E.wrex 2473   {crab 2476   _Vcvv 2760    C_ wss 3153   <.cop 3621   U.cuni 3835   |^|cint 3870   class class class wbr 4029   "cima 4662   Fun wfun 5248   -onto->wfo 5252   ` cfv 5254   1stc1st 6191   2ndc2nd 6192   Q.cnq 7340    <Q cltq 7345   P.cnp 7351
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-iinf 4620
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-1st 6193  df-2nd 6194  df-qs 6593  df-ni 7364  df-nqqs 7408  df-inp 7526
This theorem is referenced by:  suplocexprlemmu  7778  suplocexprlemru  7779  suplocexprlemdisj  7780  suplocexprlemloc  7781  suplocexprlemex  7782  suplocexprlemub  7783
  Copyright terms: Public domain W3C validator