ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  suplocexprlem2b Unicode version

Theorem suplocexprlem2b 7827
Description: Lemma for suplocexpr 7838. Expression for the lower cut of the putative supremum. (Contributed by Jim Kingdon, 9-Jan-2024.)
Hypothesis
Ref Expression
suplocexprlem2b.b  |-  B  = 
<. U. ( 1st " A
) ,  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A
) w  <Q  u } >.
Assertion
Ref Expression
suplocexprlem2b  |-  ( A 
C_  P.  ->  ( 2nd `  B )  =  {
u  e.  Q.  |  E. w  e.  |^| ( 2nd " A ) w 
<Q  u } )

Proof of Theorem suplocexprlem2b
StepHypRef Expression
1 suplocexprlem2b.b . . 3  |-  B  = 
<. U. ( 1st " A
) ,  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A
) w  <Q  u } >.
21fveq2i 5579 . 2  |-  ( 2nd `  B )  =  ( 2nd `  <. U. ( 1st " A ) ,  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A ) w  <Q  u } >. )
3 fo1st 6243 . . . . . 6  |-  1st : _V -onto-> _V
4 fofun 5499 . . . . . 6  |-  ( 1st
: _V -onto-> _V  ->  Fun 
1st )
53, 4ax-mp 5 . . . . 5  |-  Fun  1st
6 npex 7586 . . . . . 6  |-  P.  e.  _V
76ssex 4181 . . . . 5  |-  ( A 
C_  P.  ->  A  e. 
_V )
8 funimaexg 5358 . . . . 5  |-  ( ( Fun  1st  /\  A  e. 
_V )  ->  ( 1st " A )  e. 
_V )
95, 7, 8sylancr 414 . . . 4  |-  ( A 
C_  P.  ->  ( 1st " A )  e.  _V )
10 uniexg 4486 . . . 4  |-  ( ( 1st " A )  e.  _V  ->  U. ( 1st " A )  e. 
_V )
119, 10syl 14 . . 3  |-  ( A 
C_  P.  ->  U. ( 1st " A )  e. 
_V )
12 nqex 7476 . . . 4  |-  Q.  e.  _V
1312rabex 4188 . . 3  |-  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A
) w  <Q  u }  e.  _V
14 op2ndg 6237 . . 3  |-  ( ( U. ( 1st " A
)  e.  _V  /\  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A ) w 
<Q  u }  e.  _V )  ->  ( 2nd `  <. U. ( 1st " A
) ,  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A
) w  <Q  u } >. )  =  {
u  e.  Q.  |  E. w  e.  |^| ( 2nd " A ) w 
<Q  u } )
1511, 13, 14sylancl 413 . 2  |-  ( A 
C_  P.  ->  ( 2nd `  <. U. ( 1st " A
) ,  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A
) w  <Q  u } >. )  =  {
u  e.  Q.  |  E. w  e.  |^| ( 2nd " A ) w 
<Q  u } )
162, 15eqtrid 2250 1  |-  ( A 
C_  P.  ->  ( 2nd `  B )  =  {
u  e.  Q.  |  E. w  e.  |^| ( 2nd " A ) w 
<Q  u } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    e. wcel 2176   E.wrex 2485   {crab 2488   _Vcvv 2772    C_ wss 3166   <.cop 3636   U.cuni 3850   |^|cint 3885   class class class wbr 4044   "cima 4678   Fun wfun 5265   -onto->wfo 5269   ` cfv 5271   1stc1st 6224   2ndc2nd 6225   Q.cnq 7393    <Q cltq 7398   P.cnp 7404
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-iinf 4636
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-1st 6226  df-2nd 6227  df-qs 6626  df-ni 7417  df-nqqs 7461  df-inp 7579
This theorem is referenced by:  suplocexprlemmu  7831  suplocexprlemru  7832  suplocexprlemdisj  7833  suplocexprlemloc  7834  suplocexprlemex  7835  suplocexprlemub  7836
  Copyright terms: Public domain W3C validator