Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > funcnvres | Unicode version |
Description: The converse of a restricted function. (Contributed by NM, 27-Mar-1998.) |
Ref | Expression |
---|---|
funcnvres |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ima 4624 | . . . 4 | |
2 | df-rn 4622 | . . . 4 | |
3 | 1, 2 | eqtri 2191 | . . 3 |
4 | 3 | reseq2i 4888 | . 2 |
5 | resss 4915 | . . . 4 | |
6 | cnvss 4784 | . . . 4 | |
7 | 5, 6 | ax-mp 5 | . . 3 |
8 | funssres 5240 | . . 3 | |
9 | 7, 8 | mpan2 423 | . 2 |
10 | 4, 9 | eqtr2id 2216 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1348 wss 3121 ccnv 4610 cdm 4611 crn 4612 cres 4613 cima 4614 wfun 5192 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-br 3990 df-opab 4051 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-fun 5200 |
This theorem is referenced by: cnvresid 5272 funcnvres2 5273 f1orescnv 5458 f1imacnv 5459 sbthlemi4 6937 hmeores 13109 |
Copyright terms: Public domain | W3C validator |