Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > funcnvres | Unicode version |
Description: The converse of a restricted function. (Contributed by NM, 27-Mar-1998.) |
Ref | Expression |
---|---|
funcnvres |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ima 4616 | . . . 4 | |
2 | df-rn 4614 | . . . 4 | |
3 | 1, 2 | eqtri 2186 | . . 3 |
4 | 3 | reseq2i 4880 | . 2 |
5 | resss 4907 | . . . 4 | |
6 | cnvss 4776 | . . . 4 | |
7 | 5, 6 | ax-mp 5 | . . 3 |
8 | funssres 5229 | . . 3 | |
9 | 7, 8 | mpan2 422 | . 2 |
10 | 4, 9 | eqtr2id 2211 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1343 wss 3115 ccnv 4602 cdm 4603 crn 4604 cres 4605 cima 4606 wfun 5181 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4099 ax-pow 4152 ax-pr 4186 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-ral 2448 df-rex 2449 df-v 2727 df-un 3119 df-in 3121 df-ss 3128 df-pw 3560 df-sn 3581 df-pr 3582 df-op 3584 df-br 3982 df-opab 4043 df-id 4270 df-xp 4609 df-rel 4610 df-cnv 4611 df-co 4612 df-dm 4613 df-rn 4614 df-res 4615 df-ima 4616 df-fun 5189 |
This theorem is referenced by: cnvresid 5261 funcnvres2 5262 f1orescnv 5447 f1imacnv 5448 sbthlemi4 6921 hmeores 12915 |
Copyright terms: Public domain | W3C validator |