ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funcnvres Unicode version

Theorem funcnvres 5356
Description: The converse of a restricted function. (Contributed by NM, 27-Mar-1998.)
Assertion
Ref Expression
funcnvres  |-  ( Fun  `' F  ->  `' ( F  |`  A )  =  ( `' F  |`  ( F " A
) ) )

Proof of Theorem funcnvres
StepHypRef Expression
1 df-ima 4696 . . . 4  |-  ( F
" A )  =  ran  ( F  |`  A )
2 df-rn 4694 . . . 4  |-  ran  ( F  |`  A )  =  dom  `' ( F  |`  A )
31, 2eqtri 2227 . . 3  |-  ( F
" A )  =  dom  `' ( F  |`  A )
43reseq2i 4965 . 2  |-  ( `' F  |`  ( F " A ) )  =  ( `' F  |`  dom  `' ( F  |`  A ) )
5 resss 4992 . . . 4  |-  ( F  |`  A )  C_  F
6 cnvss 4859 . . . 4  |-  ( ( F  |`  A )  C_  F  ->  `' ( F  |`  A )  C_  `' F )
75, 6ax-mp 5 . . 3  |-  `' ( F  |`  A )  C_  `' F
8 funssres 5322 . . 3  |-  ( ( Fun  `' F  /\  `' ( F  |`  A )  C_  `' F )  ->  ( `' F  |`  dom  `' ( F  |`  A ) )  =  `' ( F  |`  A )
)
97, 8mpan2 425 . 2  |-  ( Fun  `' F  ->  ( `' F  |`  dom  `' ( F  |`  A )
)  =  `' ( F  |`  A )
)
104, 9eqtr2id 2252 1  |-  ( Fun  `' F  ->  `' ( F  |`  A )  =  ( `' F  |`  ( F " A
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    C_ wss 3170   `'ccnv 4682   dom cdm 4683   ran crn 4684    |` cres 4685   "cima 4686   Fun wfun 5274
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-br 4052  df-opab 4114  df-id 4348  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-fun 5282
This theorem is referenced by:  cnvresid  5357  funcnvres2  5358  f1orescnv  5550  f1imacnv  5551  sbthlemi4  7077  hmeores  14862
  Copyright terms: Public domain W3C validator