ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funcnvres Unicode version

Theorem funcnvres 5260
Description: The converse of a restricted function. (Contributed by NM, 27-Mar-1998.)
Assertion
Ref Expression
funcnvres  |-  ( Fun  `' F  ->  `' ( F  |`  A )  =  ( `' F  |`  ( F " A
) ) )

Proof of Theorem funcnvres
StepHypRef Expression
1 df-ima 4616 . . . 4  |-  ( F
" A )  =  ran  ( F  |`  A )
2 df-rn 4614 . . . 4  |-  ran  ( F  |`  A )  =  dom  `' ( F  |`  A )
31, 2eqtri 2186 . . 3  |-  ( F
" A )  =  dom  `' ( F  |`  A )
43reseq2i 4880 . 2  |-  ( `' F  |`  ( F " A ) )  =  ( `' F  |`  dom  `' ( F  |`  A ) )
5 resss 4907 . . . 4  |-  ( F  |`  A )  C_  F
6 cnvss 4776 . . . 4  |-  ( ( F  |`  A )  C_  F  ->  `' ( F  |`  A )  C_  `' F )
75, 6ax-mp 5 . . 3  |-  `' ( F  |`  A )  C_  `' F
8 funssres 5229 . . 3  |-  ( ( Fun  `' F  /\  `' ( F  |`  A )  C_  `' F )  ->  ( `' F  |`  dom  `' ( F  |`  A ) )  =  `' ( F  |`  A )
)
97, 8mpan2 422 . 2  |-  ( Fun  `' F  ->  ( `' F  |`  dom  `' ( F  |`  A )
)  =  `' ( F  |`  A )
)
104, 9eqtr2id 2211 1  |-  ( Fun  `' F  ->  `' ( F  |`  A )  =  ( `' F  |`  ( F " A
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1343    C_ wss 3115   `'ccnv 4602   dom cdm 4603   ran crn 4604    |` cres 4605   "cima 4606   Fun wfun 5181
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4099  ax-pow 4152  ax-pr 4186
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2296  df-ral 2448  df-rex 2449  df-v 2727  df-un 3119  df-in 3121  df-ss 3128  df-pw 3560  df-sn 3581  df-pr 3582  df-op 3584  df-br 3982  df-opab 4043  df-id 4270  df-xp 4609  df-rel 4610  df-cnv 4611  df-co 4612  df-dm 4613  df-rn 4614  df-res 4615  df-ima 4616  df-fun 5189
This theorem is referenced by:  cnvresid  5261  funcnvres2  5262  f1orescnv  5447  f1imacnv  5448  sbthlemi4  6921  hmeores  12915
  Copyright terms: Public domain W3C validator