ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funcnvres Unicode version

Theorem funcnvres 5346
Description: The converse of a restricted function. (Contributed by NM, 27-Mar-1998.)
Assertion
Ref Expression
funcnvres  |-  ( Fun  `' F  ->  `' ( F  |`  A )  =  ( `' F  |`  ( F " A
) ) )

Proof of Theorem funcnvres
StepHypRef Expression
1 df-ima 4687 . . . 4  |-  ( F
" A )  =  ran  ( F  |`  A )
2 df-rn 4685 . . . 4  |-  ran  ( F  |`  A )  =  dom  `' ( F  |`  A )
31, 2eqtri 2225 . . 3  |-  ( F
" A )  =  dom  `' ( F  |`  A )
43reseq2i 4955 . 2  |-  ( `' F  |`  ( F " A ) )  =  ( `' F  |`  dom  `' ( F  |`  A ) )
5 resss 4982 . . . 4  |-  ( F  |`  A )  C_  F
6 cnvss 4850 . . . 4  |-  ( ( F  |`  A )  C_  F  ->  `' ( F  |`  A )  C_  `' F )
75, 6ax-mp 5 . . 3  |-  `' ( F  |`  A )  C_  `' F
8 funssres 5312 . . 3  |-  ( ( Fun  `' F  /\  `' ( F  |`  A )  C_  `' F )  ->  ( `' F  |`  dom  `' ( F  |`  A ) )  =  `' ( F  |`  A )
)
97, 8mpan2 425 . 2  |-  ( Fun  `' F  ->  ( `' F  |`  dom  `' ( F  |`  A )
)  =  `' ( F  |`  A )
)
104, 9eqtr2id 2250 1  |-  ( Fun  `' F  ->  `' ( F  |`  A )  =  ( `' F  |`  ( F " A
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1372    C_ wss 3165   `'ccnv 4673   dom cdm 4674   ran crn 4675    |` cres 4676   "cima 4677   Fun wfun 5264
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-v 2773  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-br 4044  df-opab 4105  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-fun 5272
This theorem is referenced by:  cnvresid  5347  funcnvres2  5348  f1orescnv  5537  f1imacnv  5538  sbthlemi4  7061  hmeores  14729
  Copyright terms: Public domain W3C validator