ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funres11 GIF version

Theorem funres11 5345
Description: The restriction of a one-to-one function is one-to-one. (Contributed by NM, 25-Mar-1998.)
Assertion
Ref Expression
funres11 (Fun 𝐹 → Fun (𝐹𝐴))

Proof of Theorem funres11
StepHypRef Expression
1 resss 4982 . 2 (𝐹𝐴) ⊆ 𝐹
2 cnvss 4850 . 2 ((𝐹𝐴) ⊆ 𝐹(𝐹𝐴) ⊆ 𝐹)
3 funss 5289 . 2 ((𝐹𝐴) ⊆ 𝐹 → (Fun 𝐹 → Fun (𝐹𝐴)))
41, 2, 3mp2b 8 1 (Fun 𝐹 → Fun (𝐹𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wss 3165  ccnv 4673  cres 4676  Fun wfun 5264
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-v 2773  df-in 3171  df-ss 3178  df-br 4044  df-opab 4105  df-rel 4681  df-cnv 4682  df-co 4683  df-res 4686  df-fun 5272
This theorem is referenced by:  f1ssres  5489  resdif  5543  ssdomg  6869  sbthlemi8  7065
  Copyright terms: Public domain W3C validator