![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > funres11 | GIF version |
Description: The restriction of a one-to-one function is one-to-one. (Contributed by NM, 25-Mar-1998.) |
Ref | Expression |
---|---|
funres11 | ⊢ (Fun ◡𝐹 → Fun ◡(𝐹 ↾ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resss 4933 | . 2 ⊢ (𝐹 ↾ 𝐴) ⊆ 𝐹 | |
2 | cnvss 4802 | . 2 ⊢ ((𝐹 ↾ 𝐴) ⊆ 𝐹 → ◡(𝐹 ↾ 𝐴) ⊆ ◡𝐹) | |
3 | funss 5237 | . 2 ⊢ (◡(𝐹 ↾ 𝐴) ⊆ ◡𝐹 → (Fun ◡𝐹 → Fun ◡(𝐹 ↾ 𝐴))) | |
4 | 1, 2, 3 | mp2b 8 | 1 ⊢ (Fun ◡𝐹 → Fun ◡(𝐹 ↾ 𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ⊆ wss 3131 ◡ccnv 4627 ↾ cres 4630 Fun wfun 5212 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-v 2741 df-in 3137 df-ss 3144 df-br 4006 df-opab 4067 df-rel 4635 df-cnv 4636 df-co 4637 df-res 4640 df-fun 5220 |
This theorem is referenced by: f1ssres 5432 resdif 5485 ssdomg 6781 sbthlemi8 6966 |
Copyright terms: Public domain | W3C validator |