| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > funres11 | GIF version | ||
| Description: The restriction of a one-to-one function is one-to-one. (Contributed by NM, 25-Mar-1998.) | 
| Ref | Expression | 
|---|---|
| funres11 | ⊢ (Fun ◡𝐹 → Fun ◡(𝐹 ↾ 𝐴)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | resss 4970 | . 2 ⊢ (𝐹 ↾ 𝐴) ⊆ 𝐹 | |
| 2 | cnvss 4839 | . 2 ⊢ ((𝐹 ↾ 𝐴) ⊆ 𝐹 → ◡(𝐹 ↾ 𝐴) ⊆ ◡𝐹) | |
| 3 | funss 5277 | . 2 ⊢ (◡(𝐹 ↾ 𝐴) ⊆ ◡𝐹 → (Fun ◡𝐹 → Fun ◡(𝐹 ↾ 𝐴))) | |
| 4 | 1, 2, 3 | mp2b 8 | 1 ⊢ (Fun ◡𝐹 → Fun ◡(𝐹 ↾ 𝐴)) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ⊆ wss 3157 ◡ccnv 4662 ↾ cres 4665 Fun wfun 5252 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-in 3163 df-ss 3170 df-br 4034 df-opab 4095 df-rel 4670 df-cnv 4671 df-co 4672 df-res 4675 df-fun 5260 | 
| This theorem is referenced by: f1ssres 5472 resdif 5526 ssdomg 6837 sbthlemi8 7030 | 
| Copyright terms: Public domain | W3C validator |