ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funres11 GIF version

Theorem funres11 5290
Description: The restriction of a one-to-one function is one-to-one. (Contributed by NM, 25-Mar-1998.)
Assertion
Ref Expression
funres11 (Fun 𝐹 → Fun (𝐹𝐴))

Proof of Theorem funres11
StepHypRef Expression
1 resss 4933 . 2 (𝐹𝐴) ⊆ 𝐹
2 cnvss 4802 . 2 ((𝐹𝐴) ⊆ 𝐹(𝐹𝐴) ⊆ 𝐹)
3 funss 5237 . 2 ((𝐹𝐴) ⊆ 𝐹 → (Fun 𝐹 → Fun (𝐹𝐴)))
41, 2, 3mp2b 8 1 (Fun 𝐹 → Fun (𝐹𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wss 3131  ccnv 4627  cres 4630  Fun wfun 5212
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2741  df-in 3137  df-ss 3144  df-br 4006  df-opab 4067  df-rel 4635  df-cnv 4636  df-co 4637  df-res 4640  df-fun 5220
This theorem is referenced by:  f1ssres  5432  resdif  5485  ssdomg  6780  sbthlemi8  6965
  Copyright terms: Public domain W3C validator