| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > funres11 | GIF version | ||
| Description: The restriction of a one-to-one function is one-to-one. (Contributed by NM, 25-Mar-1998.) |
| Ref | Expression |
|---|---|
| funres11 | ⊢ (Fun ◡𝐹 → Fun ◡(𝐹 ↾ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resss 4982 | . 2 ⊢ (𝐹 ↾ 𝐴) ⊆ 𝐹 | |
| 2 | cnvss 4850 | . 2 ⊢ ((𝐹 ↾ 𝐴) ⊆ 𝐹 → ◡(𝐹 ↾ 𝐴) ⊆ ◡𝐹) | |
| 3 | funss 5289 | . 2 ⊢ (◡(𝐹 ↾ 𝐴) ⊆ ◡𝐹 → (Fun ◡𝐹 → Fun ◡(𝐹 ↾ 𝐴))) | |
| 4 | 1, 2, 3 | mp2b 8 | 1 ⊢ (Fun ◡𝐹 → Fun ◡(𝐹 ↾ 𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ⊆ wss 3165 ◡ccnv 4673 ↾ cres 4676 Fun wfun 5264 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-v 2773 df-in 3171 df-ss 3178 df-br 4044 df-opab 4105 df-rel 4681 df-cnv 4682 df-co 4683 df-res 4686 df-fun 5272 |
| This theorem is referenced by: f1ssres 5489 resdif 5543 ssdomg 6869 sbthlemi8 7065 |
| Copyright terms: Public domain | W3C validator |