ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbthlemi8 Unicode version

Theorem sbthlemi8 7131
Description: Lemma for isbth 7134. (Contributed by NM, 27-Mar-1998.)
Hypotheses
Ref Expression
sbthlem.1  |-  A  e. 
_V
sbthlem.2  |-  D  =  { x  |  ( x  C_  A  /\  ( g " ( B  \  ( f "
x ) ) ) 
C_  ( A  \  x ) ) }
sbthlem.3  |-  H  =  ( ( f  |`  U. D )  u.  ( `' g  |`  ( A 
\  U. D ) ) )
Assertion
Ref Expression
sbthlemi8  |-  ( ( (EXMID 
/\  Fun  `' f
)  /\  ( (
( Fun  g  /\  dom  g  =  B
)  /\  ran  g  C_  A )  /\  Fun  `' g ) )  ->  Fun  `' H )
Distinct variable groups:    x, A    x, B    x, D    x, f    x, g    x, H
Allowed substitution hints:    A( f, g)    B( f, g)    D( f, g)    H( f, g)

Proof of Theorem sbthlemi8
StepHypRef Expression
1 funres11 5393 . . . 4  |-  ( Fun  `' f  ->  Fun  `' ( f  |`  U. D
) )
21ad2antlr 489 . . 3  |-  ( ( (EXMID 
/\  Fun  `' f
)  /\  ( (
( Fun  g  /\  dom  g  =  B
)  /\  ran  g  C_  A )  /\  Fun  `' g ) )  ->  Fun  `' ( f  |`  U. D ) )
3 funcnvcnv 5380 . . . . . 6  |-  ( Fun  g  ->  Fun  `' `' g )
4 funres11 5393 . . . . . 6  |-  ( Fun  `' `' g  ->  Fun  `' ( `' g  |`  ( A 
\  U. D ) ) )
53, 4syl 14 . . . . 5  |-  ( Fun  g  ->  Fun  `' ( `' g  |`  ( A 
\  U. D ) ) )
65ad2antrr 488 . . . 4  |-  ( ( ( Fun  g  /\  dom  g  =  B
)  /\  ran  g  C_  A )  ->  Fun  `' ( `' g  |`  ( A  \  U. D
) ) )
76ad2antrl 490 . . 3  |-  ( ( (EXMID 
/\  Fun  `' f
)  /\  ( (
( Fun  g  /\  dom  g  =  B
)  /\  ran  g  C_  A )  /\  Fun  `' g ) )  ->  Fun  `' ( `' g  |`  ( A  \  U. D ) ) )
8 simpll 527 . . . 4  |-  ( ( (EXMID 
/\  Fun  `' f
)  /\  ( (
( Fun  g  /\  dom  g  =  B
)  /\  ran  g  C_  A )  /\  Fun  `' g ) )  -> EXMID )
9 simprll 537 . . . . 5  |-  ( ( (EXMID 
/\  Fun  `' f
)  /\  ( (
( Fun  g  /\  dom  g  =  B
)  /\  ran  g  C_  A )  /\  Fun  `' g ) )  -> 
( Fun  g  /\  dom  g  =  B
) )
109simprd 114 . . . 4  |-  ( ( (EXMID 
/\  Fun  `' f
)  /\  ( (
( Fun  g  /\  dom  g  =  B
)  /\  ran  g  C_  A )  /\  Fun  `' g ) )  ->  dom  g  =  B
)
11 simprlr 538 . . . 4  |-  ( ( (EXMID 
/\  Fun  `' f
)  /\  ( (
( Fun  g  /\  dom  g  =  B
)  /\  ran  g  C_  A )  /\  Fun  `' g ) )  ->  ran  g  C_  A )
12 simprr 531 . . . 4  |-  ( ( (EXMID 
/\  Fun  `' f
)  /\  ( (
( Fun  g  /\  dom  g  =  B
)  /\  ran  g  C_  A )  /\  Fun  `' g ) )  ->  Fun  `' g )
13 df-ima 4732 . . . . . . 7  |-  ( f
" U. D )  =  ran  ( f  |`  U. D )
14 df-rn 4730 . . . . . . 7  |-  ran  (
f  |`  U. D )  =  dom  `' ( f  |`  U. D )
1513, 14eqtr2i 2251 . . . . . 6  |-  dom  `' ( f  |`  U. D
)  =  ( f
" U. D )
16 df-ima 4732 . . . . . . . 8  |-  ( `' g " ( A 
\  U. D ) )  =  ran  ( `' g  |`  ( A  \ 
U. D ) )
17 df-rn 4730 . . . . . . . 8  |-  ran  ( `' g  |`  ( A 
\  U. D ) )  =  dom  `' ( `' g  |`  ( A 
\  U. D ) )
1816, 17eqtri 2250 . . . . . . 7  |-  ( `' g " ( A 
\  U. D ) )  =  dom  `' ( `' g  |`  ( A 
\  U. D ) )
19 sbthlem.1 . . . . . . . 8  |-  A  e. 
_V
20 sbthlem.2 . . . . . . . 8  |-  D  =  { x  |  ( x  C_  A  /\  ( g " ( B  \  ( f "
x ) ) ) 
C_  ( A  \  x ) ) }
2119, 20sbthlemi4 7127 . . . . . . 7  |-  ( (EXMID  /\  ( dom  g  =  B  /\  ran  g  C_  A )  /\  Fun  `' g )  ->  ( `' g " ( A  \  U. D ) )  =  ( B 
\  ( f " U. D ) ) )
2218, 21eqtr3id 2276 . . . . . 6  |-  ( (EXMID  /\  ( dom  g  =  B  /\  ran  g  C_  A )  /\  Fun  `' g )  ->  dom  `' ( `' g  |`  ( A  \  U. D
) )  =  ( B  \  ( f
" U. D ) ) )
23 ineq12 3400 . . . . . 6  |-  ( ( dom  `' ( f  |`  U. D )  =  ( f " U. D )  /\  dom  `' ( `' g  |`  ( A  \  U. D
) )  =  ( B  \  ( f
" U. D ) ) )  ->  ( dom  `' ( f  |`  U. D )  i^i  dom  `' ( `' g  |`  ( A  \  U. D
) ) )  =  ( ( f " U. D )  i^i  ( B  \  ( f " U. D ) ) ) )
2415, 22, 23sylancr 414 . . . . 5  |-  ( (EXMID  /\  ( dom  g  =  B  /\  ran  g  C_  A )  /\  Fun  `' g )  ->  ( dom  `' ( f  |`  U. D )  i^i  dom  `' ( `' g  |`  ( A  \  U. D
) ) )  =  ( ( f " U. D )  i^i  ( B  \  ( f " U. D ) ) ) )
25 disjdif 3564 . . . . 5  |-  ( ( f " U. D
)  i^i  ( B  \  ( f " U. D ) ) )  =  (/)
2624, 25eqtrdi 2278 . . . 4  |-  ( (EXMID  /\  ( dom  g  =  B  /\  ran  g  C_  A )  /\  Fun  `' g )  ->  ( dom  `' ( f  |`  U. D )  i^i  dom  `' ( `' g  |`  ( A  \  U. D
) ) )  =  (/) )
278, 10, 11, 12, 26syl121anc 1276 . . 3  |-  ( ( (EXMID 
/\  Fun  `' f
)  /\  ( (
( Fun  g  /\  dom  g  =  B
)  /\  ran  g  C_  A )  /\  Fun  `' g ) )  -> 
( dom  `' (
f  |`  U. D )  i^i  dom  `' ( `' g  |`  ( A 
\  U. D ) ) )  =  (/) )
28 funun 5362 . . 3  |-  ( ( ( Fun  `' ( f  |`  U. D )  /\  Fun  `' ( `' g  |`  ( A 
\  U. D ) ) )  /\  ( dom  `' ( f  |`  U. D )  i^i  dom  `' ( `' g  |`  ( A  \  U. D
) ) )  =  (/) )  ->  Fun  ( `' ( f  |`  U. D )  u.  `' ( `' g  |`  ( A 
\  U. D ) ) ) )
292, 7, 27, 28syl21anc 1270 . 2  |-  ( ( (EXMID 
/\  Fun  `' f
)  /\  ( (
( Fun  g  /\  dom  g  =  B
)  /\  ran  g  C_  A )  /\  Fun  `' g ) )  ->  Fun  ( `' ( f  |`  U. D )  u.  `' ( `' g  |`  ( A  \  U. D ) ) ) )
30 sbthlem.3 . . . . 5  |-  H  =  ( ( f  |`  U. D )  u.  ( `' g  |`  ( A 
\  U. D ) ) )
3130cnveqi 4897 . . . 4  |-  `' H  =  `' ( ( f  |`  U. D )  u.  ( `' g  |`  ( A  \  U. D
) ) )
32 cnvun 5134 . . . 4  |-  `' ( ( f  |`  U. D
)  u.  ( `' g  |`  ( A  \ 
U. D ) ) )  =  ( `' ( f  |`  U. D
)  u.  `' ( `' g  |`  ( A 
\  U. D ) ) )
3331, 32eqtri 2250 . . 3  |-  `' H  =  ( `' ( f  |`  U. D )  u.  `' ( `' g  |`  ( A  \ 
U. D ) ) )
3433funeqi 5339 . 2  |-  ( Fun  `' H  <->  Fun  ( `' ( f  |`  U. D )  u.  `' ( `' g  |`  ( A  \ 
U. D ) ) ) )
3529, 34sylibr 134 1  |-  ( ( (EXMID 
/\  Fun  `' f
)  /\  ( (
( Fun  g  /\  dom  g  =  B
)  /\  ran  g  C_  A )  /\  Fun  `' g ) )  ->  Fun  `' H )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 1002    = wceq 1395    e. wcel 2200   {cab 2215   _Vcvv 2799    \ cdif 3194    u. cun 3195    i^i cin 3196    C_ wss 3197   (/)c0 3491   U.cuni 3888  EXMIDwem 4278   `'ccnv 4718   dom cdm 4719   ran crn 4720    |` cres 4721   "cima 4722   Fun wfun 5312
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-stab 836  df-dc 840  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-exmid 4279  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-fun 5320
This theorem is referenced by:  sbthlemi9  7132
  Copyright terms: Public domain W3C validator