| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sbthlemi8 | Unicode version | ||
| Description: Lemma for isbth 7071. (Contributed by NM, 27-Mar-1998.) |
| Ref | Expression |
|---|---|
| sbthlem.1 |
|
| sbthlem.2 |
|
| sbthlem.3 |
|
| Ref | Expression |
|---|---|
| sbthlemi8 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funres11 5347 |
. . . 4
| |
| 2 | 1 | ad2antlr 489 |
. . 3
|
| 3 | funcnvcnv 5334 |
. . . . . 6
| |
| 4 | funres11 5347 |
. . . . . 6
| |
| 5 | 3, 4 | syl 14 |
. . . . 5
|
| 6 | 5 | ad2antrr 488 |
. . . 4
|
| 7 | 6 | ad2antrl 490 |
. . 3
|
| 8 | simpll 527 |
. . . 4
| |
| 9 | simprll 537 |
. . . . 5
| |
| 10 | 9 | simprd 114 |
. . . 4
|
| 11 | simprlr 538 |
. . . 4
| |
| 12 | simprr 531 |
. . . 4
| |
| 13 | df-ima 4689 |
. . . . . . 7
| |
| 14 | df-rn 4687 |
. . . . . . 7
| |
| 15 | 13, 14 | eqtr2i 2227 |
. . . . . 6
|
| 16 | df-ima 4689 |
. . . . . . . 8
| |
| 17 | df-rn 4687 |
. . . . . . . 8
| |
| 18 | 16, 17 | eqtri 2226 |
. . . . . . 7
|
| 19 | sbthlem.1 |
. . . . . . . 8
| |
| 20 | sbthlem.2 |
. . . . . . . 8
| |
| 21 | 19, 20 | sbthlemi4 7064 |
. . . . . . 7
|
| 22 | 18, 21 | eqtr3id 2252 |
. . . . . 6
|
| 23 | ineq12 3369 |
. . . . . 6
| |
| 24 | 15, 22, 23 | sylancr 414 |
. . . . 5
|
| 25 | disjdif 3533 |
. . . . 5
| |
| 26 | 24, 25 | eqtrdi 2254 |
. . . 4
|
| 27 | 8, 10, 11, 12, 26 | syl121anc 1255 |
. . 3
|
| 28 | funun 5316 |
. . 3
| |
| 29 | 2, 7, 27, 28 | syl21anc 1249 |
. 2
|
| 30 | sbthlem.3 |
. . . . 5
| |
| 31 | 30 | cnveqi 4854 |
. . . 4
|
| 32 | cnvun 5089 |
. . . 4
| |
| 33 | 31, 32 | eqtri 2226 |
. . 3
|
| 34 | 33 | funeqi 5293 |
. 2
|
| 35 | 29, 34 | sylibr 134 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-nul 4171 ax-pow 4219 ax-pr 4254 |
| This theorem depends on definitions: df-bi 117 df-stab 833 df-dc 837 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4046 df-opab 4107 df-exmid 4240 df-id 4341 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-rn 4687 df-res 4688 df-ima 4689 df-fun 5274 |
| This theorem is referenced by: sbthlemi9 7069 |
| Copyright terms: Public domain | W3C validator |