| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sbthlemi8 | Unicode version | ||
| Description: Lemma for isbth 7042. (Contributed by NM, 27-Mar-1998.) |
| Ref | Expression |
|---|---|
| sbthlem.1 |
|
| sbthlem.2 |
|
| sbthlem.3 |
|
| Ref | Expression |
|---|---|
| sbthlemi8 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funres11 5331 |
. . . 4
| |
| 2 | 1 | ad2antlr 489 |
. . 3
|
| 3 | funcnvcnv 5318 |
. . . . . 6
| |
| 4 | funres11 5331 |
. . . . . 6
| |
| 5 | 3, 4 | syl 14 |
. . . . 5
|
| 6 | 5 | ad2antrr 488 |
. . . 4
|
| 7 | 6 | ad2antrl 490 |
. . 3
|
| 8 | simpll 527 |
. . . 4
| |
| 9 | simprll 537 |
. . . . 5
| |
| 10 | 9 | simprd 114 |
. . . 4
|
| 11 | simprlr 538 |
. . . 4
| |
| 12 | simprr 531 |
. . . 4
| |
| 13 | df-ima 4677 |
. . . . . . 7
| |
| 14 | df-rn 4675 |
. . . . . . 7
| |
| 15 | 13, 14 | eqtr2i 2218 |
. . . . . 6
|
| 16 | df-ima 4677 |
. . . . . . . 8
| |
| 17 | df-rn 4675 |
. . . . . . . 8
| |
| 18 | 16, 17 | eqtri 2217 |
. . . . . . 7
|
| 19 | sbthlem.1 |
. . . . . . . 8
| |
| 20 | sbthlem.2 |
. . . . . . . 8
| |
| 21 | 19, 20 | sbthlemi4 7035 |
. . . . . . 7
|
| 22 | 18, 21 | eqtr3id 2243 |
. . . . . 6
|
| 23 | ineq12 3360 |
. . . . . 6
| |
| 24 | 15, 22, 23 | sylancr 414 |
. . . . 5
|
| 25 | disjdif 3524 |
. . . . 5
| |
| 26 | 24, 25 | eqtrdi 2245 |
. . . 4
|
| 27 | 8, 10, 11, 12, 26 | syl121anc 1254 |
. . 3
|
| 28 | funun 5303 |
. . 3
| |
| 29 | 2, 7, 27, 28 | syl21anc 1248 |
. 2
|
| 30 | sbthlem.3 |
. . . . 5
| |
| 31 | 30 | cnveqi 4842 |
. . . 4
|
| 32 | cnvun 5076 |
. . . 4
| |
| 33 | 31, 32 | eqtri 2217 |
. . 3
|
| 34 | 33 | funeqi 5280 |
. 2
|
| 35 | 29, 34 | sylibr 134 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 |
| This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-exmid 4229 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-fun 5261 |
| This theorem is referenced by: sbthlemi9 7040 |
| Copyright terms: Public domain | W3C validator |