Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cnvss | Unicode version |
Description: Subset theorem for converse. (Contributed by NM, 22-Mar-1998.) |
Ref | Expression |
---|---|
cnvss |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel 3147 | . . . 4 | |
2 | df-br 3999 | . . . 4 | |
3 | df-br 3999 | . . . 4 | |
4 | 1, 2, 3 | 3imtr4g 205 | . . 3 |
5 | 4 | ssopab2dv 4272 | . 2 |
6 | df-cnv 4628 | . 2 | |
7 | df-cnv 4628 | . 2 | |
8 | 5, 6, 7 | 3sstr4g 3196 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wcel 2146 wss 3127 cop 3592 class class class wbr 3998 copab 4058 ccnv 4619 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-in 3133 df-ss 3140 df-br 3999 df-opab 4060 df-cnv 4628 |
This theorem is referenced by: cnveq 4794 rnss 4850 relcnvtr 5140 funss 5227 funcnvuni 5277 funres11 5280 funcnvres 5281 foimacnv 5471 tposss 6237 structcnvcnv 12443 pw1nct 14293 |
Copyright terms: Public domain | W3C validator |