ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnvss Unicode version

Theorem cnvss 4895
Description: Subset theorem for converse. (Contributed by NM, 22-Mar-1998.)
Assertion
Ref Expression
cnvss  |-  ( A 
C_  B  ->  `' A  C_  `' B )

Proof of Theorem cnvss
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssel 3218 . . . 4  |-  ( A 
C_  B  ->  ( <. y ,  x >.  e.  A  ->  <. y ,  x >.  e.  B
) )
2 df-br 4084 . . . 4  |-  ( y A x  <->  <. y ,  x >.  e.  A
)
3 df-br 4084 . . . 4  |-  ( y B x  <->  <. y ,  x >.  e.  B
)
41, 2, 33imtr4g 205 . . 3  |-  ( A 
C_  B  ->  (
y A x  -> 
y B x ) )
54ssopab2dv 4367 . 2  |-  ( A 
C_  B  ->  { <. x ,  y >.  |  y A x }  C_  {
<. x ,  y >.  |  y B x } )
6 df-cnv 4727 . 2  |-  `' A  =  { <. x ,  y
>.  |  y A x }
7 df-cnv 4727 . 2  |-  `' B  =  { <. x ,  y
>.  |  y B x }
85, 6, 73sstr4g 3267 1  |-  ( A 
C_  B  ->  `' A  C_  `' B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2200    C_ wss 3197   <.cop 3669   class class class wbr 4083   {copab 4144   `'ccnv 4718
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-in 3203  df-ss 3210  df-br 4084  df-opab 4146  df-cnv 4727
This theorem is referenced by:  cnveq  4896  rnss  4954  relcnvtr  5248  funss  5337  funcnvuni  5390  funres11  5393  funcnvres  5394  foimacnv  5590  tposss  6392  structcnvcnv  13048  pw1nct  16369
  Copyright terms: Public domain W3C validator