| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cnvss | Unicode version | ||
| Description: Subset theorem for converse. (Contributed by NM, 22-Mar-1998.) |
| Ref | Expression |
|---|---|
| cnvss |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel 3187 |
. . . 4
| |
| 2 | df-br 4046 |
. . . 4
| |
| 3 | df-br 4046 |
. . . 4
| |
| 4 | 1, 2, 3 | 3imtr4g 205 |
. . 3
|
| 5 | 4 | ssopab2dv 4326 |
. 2
|
| 6 | df-cnv 4684 |
. 2
| |
| 7 | df-cnv 4684 |
. 2
| |
| 8 | 5, 6, 7 | 3sstr4g 3236 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-in 3172 df-ss 3179 df-br 4046 df-opab 4107 df-cnv 4684 |
| This theorem is referenced by: cnveq 4853 rnss 4909 relcnvtr 5203 funss 5291 funcnvuni 5344 funres11 5347 funcnvres 5348 foimacnv 5542 tposss 6334 structcnvcnv 12881 pw1nct 15977 |
| Copyright terms: Public domain | W3C validator |