ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnvss Unicode version

Theorem cnvss 4835
Description: Subset theorem for converse. (Contributed by NM, 22-Mar-1998.)
Assertion
Ref Expression
cnvss  |-  ( A 
C_  B  ->  `' A  C_  `' B )

Proof of Theorem cnvss
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssel 3173 . . . 4  |-  ( A 
C_  B  ->  ( <. y ,  x >.  e.  A  ->  <. y ,  x >.  e.  B
) )
2 df-br 4030 . . . 4  |-  ( y A x  <->  <. y ,  x >.  e.  A
)
3 df-br 4030 . . . 4  |-  ( y B x  <->  <. y ,  x >.  e.  B
)
41, 2, 33imtr4g 205 . . 3  |-  ( A 
C_  B  ->  (
y A x  -> 
y B x ) )
54ssopab2dv 4309 . 2  |-  ( A 
C_  B  ->  { <. x ,  y >.  |  y A x }  C_  {
<. x ,  y >.  |  y B x } )
6 df-cnv 4667 . 2  |-  `' A  =  { <. x ,  y
>.  |  y A x }
7 df-cnv 4667 . 2  |-  `' B  =  { <. x ,  y
>.  |  y B x }
85, 6, 73sstr4g 3222 1  |-  ( A 
C_  B  ->  `' A  C_  `' B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2164    C_ wss 3153   <.cop 3621   class class class wbr 4029   {copab 4089   `'ccnv 4658
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-in 3159  df-ss 3166  df-br 4030  df-opab 4091  df-cnv 4667
This theorem is referenced by:  cnveq  4836  rnss  4892  relcnvtr  5185  funss  5273  funcnvuni  5323  funres11  5326  funcnvres  5327  foimacnv  5518  tposss  6299  structcnvcnv  12634  pw1nct  15493
  Copyright terms: Public domain W3C validator