ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnvss Unicode version

Theorem cnvss 4802
Description: Subset theorem for converse. (Contributed by NM, 22-Mar-1998.)
Assertion
Ref Expression
cnvss  |-  ( A 
C_  B  ->  `' A  C_  `' B )

Proof of Theorem cnvss
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssel 3151 . . . 4  |-  ( A 
C_  B  ->  ( <. y ,  x >.  e.  A  ->  <. y ,  x >.  e.  B
) )
2 df-br 4006 . . . 4  |-  ( y A x  <->  <. y ,  x >.  e.  A
)
3 df-br 4006 . . . 4  |-  ( y B x  <->  <. y ,  x >.  e.  B
)
41, 2, 33imtr4g 205 . . 3  |-  ( A 
C_  B  ->  (
y A x  -> 
y B x ) )
54ssopab2dv 4280 . 2  |-  ( A 
C_  B  ->  { <. x ,  y >.  |  y A x }  C_  {
<. x ,  y >.  |  y B x } )
6 df-cnv 4636 . 2  |-  `' A  =  { <. x ,  y
>.  |  y A x }
7 df-cnv 4636 . 2  |-  `' B  =  { <. x ,  y
>.  |  y B x }
85, 6, 73sstr4g 3200 1  |-  ( A 
C_  B  ->  `' A  C_  `' B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2148    C_ wss 3131   <.cop 3597   class class class wbr 4005   {copab 4065   `'ccnv 4627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-in 3137  df-ss 3144  df-br 4006  df-opab 4067  df-cnv 4636
This theorem is referenced by:  cnveq  4803  rnss  4859  relcnvtr  5150  funss  5237  funcnvuni  5287  funres11  5290  funcnvres  5291  foimacnv  5481  tposss  6249  structcnvcnv  12480  pw1nct  14837
  Copyright terms: Public domain W3C validator