ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnvss Unicode version

Theorem cnvss 4852
Description: Subset theorem for converse. (Contributed by NM, 22-Mar-1998.)
Assertion
Ref Expression
cnvss  |-  ( A 
C_  B  ->  `' A  C_  `' B )

Proof of Theorem cnvss
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssel 3187 . . . 4  |-  ( A 
C_  B  ->  ( <. y ,  x >.  e.  A  ->  <. y ,  x >.  e.  B
) )
2 df-br 4046 . . . 4  |-  ( y A x  <->  <. y ,  x >.  e.  A
)
3 df-br 4046 . . . 4  |-  ( y B x  <->  <. y ,  x >.  e.  B
)
41, 2, 33imtr4g 205 . . 3  |-  ( A 
C_  B  ->  (
y A x  -> 
y B x ) )
54ssopab2dv 4326 . 2  |-  ( A 
C_  B  ->  { <. x ,  y >.  |  y A x }  C_  {
<. x ,  y >.  |  y B x } )
6 df-cnv 4684 . 2  |-  `' A  =  { <. x ,  y
>.  |  y A x }
7 df-cnv 4684 . 2  |-  `' B  =  { <. x ,  y
>.  |  y B x }
85, 6, 73sstr4g 3236 1  |-  ( A 
C_  B  ->  `' A  C_  `' B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2176    C_ wss 3166   <.cop 3636   class class class wbr 4045   {copab 4105   `'ccnv 4675
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-in 3172  df-ss 3179  df-br 4046  df-opab 4107  df-cnv 4684
This theorem is referenced by:  cnveq  4853  rnss  4909  relcnvtr  5203  funss  5291  funcnvuni  5344  funres11  5347  funcnvres  5348  foimacnv  5542  tposss  6334  structcnvcnv  12881  pw1nct  15977
  Copyright terms: Public domain W3C validator