ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnvss Unicode version

Theorem cnvss 4597
Description: Subset theorem for converse. (Contributed by NM, 22-Mar-1998.)
Assertion
Ref Expression
cnvss  |-  ( A 
C_  B  ->  `' A  C_  `' B )

Proof of Theorem cnvss
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssel 3017 . . . 4  |-  ( A 
C_  B  ->  ( <. y ,  x >.  e.  A  ->  <. y ,  x >.  e.  B
) )
2 df-br 3838 . . . 4  |-  ( y A x  <->  <. y ,  x >.  e.  A
)
3 df-br 3838 . . . 4  |-  ( y B x  <->  <. y ,  x >.  e.  B
)
41, 2, 33imtr4g 203 . . 3  |-  ( A 
C_  B  ->  (
y A x  -> 
y B x ) )
54ssopab2dv 4096 . 2  |-  ( A 
C_  B  ->  { <. x ,  y >.  |  y A x }  C_  {
<. x ,  y >.  |  y B x } )
6 df-cnv 4436 . 2  |-  `' A  =  { <. x ,  y
>.  |  y A x }
7 df-cnv 4436 . 2  |-  `' B  =  { <. x ,  y
>.  |  y B x }
85, 6, 73sstr4g 3065 1  |-  ( A 
C_  B  ->  `' A  C_  `' B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 1438    C_ wss 2997   <.cop 3444   class class class wbr 3837   {copab 3890   `'ccnv 4427
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070
This theorem depends on definitions:  df-bi 115  df-nf 1395  df-sb 1693  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-in 3003  df-ss 3010  df-br 3838  df-opab 3892  df-cnv 4436
This theorem is referenced by:  cnveq  4598  rnss  4653  relcnvtr  4937  funss  5020  funcnvuni  5069  funres11  5072  funcnvres  5073  foimacnv  5255  tposss  5993
  Copyright terms: Public domain W3C validator