| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cnvss | Unicode version | ||
| Description: Subset theorem for converse. (Contributed by NM, 22-Mar-1998.) |
| Ref | Expression |
|---|---|
| cnvss |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel 3195 |
. . . 4
| |
| 2 | df-br 4060 |
. . . 4
| |
| 3 | df-br 4060 |
. . . 4
| |
| 4 | 1, 2, 3 | 3imtr4g 205 |
. . 3
|
| 5 | 4 | ssopab2dv 4343 |
. 2
|
| 6 | df-cnv 4701 |
. 2
| |
| 7 | df-cnv 4701 |
. 2
| |
| 8 | 5, 6, 7 | 3sstr4g 3244 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-in 3180 df-ss 3187 df-br 4060 df-opab 4122 df-cnv 4701 |
| This theorem is referenced by: cnveq 4870 rnss 4927 relcnvtr 5221 funss 5309 funcnvuni 5362 funres11 5365 funcnvres 5366 foimacnv 5562 tposss 6355 structcnvcnv 12963 pw1nct 16142 |
| Copyright terms: Public domain | W3C validator |