ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fodjuomni Unicode version

Theorem fodjuomni 7208
Description: A condition which ensures  A is either inhabited or empty. Lemma 3.2 of [PradicBrown2022], p. 4. (Contributed by Jim Kingdon, 27-Jul-2022.)
Hypotheses
Ref Expression
fodjuomni.o  |-  ( ph  ->  O  e. Omni )
fodjuomni.fo  |-  ( ph  ->  F : O -onto-> ( A B ) )
Assertion
Ref Expression
fodjuomni  |-  ( ph  ->  ( E. x  x  e.  A  \/  A  =  (/) ) )
Distinct variable group:    x, A
Allowed substitution hints:    ph( x)    B( x)    F( x)    O( x)

Proof of Theorem fodjuomni
Dummy variables  a  b  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fodjuomni.o . 2  |-  ( ph  ->  O  e. Omni )
2 fodjuomni.fo . 2  |-  ( ph  ->  F : O -onto-> ( A B ) )
3 fveq2 5554 . . . . . . 7  |-  ( b  =  z  ->  (inl `  b )  =  (inl
`  z ) )
43eqeq2d 2205 . . . . . 6  |-  ( b  =  z  ->  (
( F `  a
)  =  (inl `  b )  <->  ( F `  a )  =  (inl
`  z ) ) )
54cbvrexv 2727 . . . . 5  |-  ( E. b  e.  A  ( F `  a )  =  (inl `  b
)  <->  E. z  e.  A  ( F `  a )  =  (inl `  z
) )
6 ifbi 3577 . . . . 5  |-  ( ( E. b  e.  A  ( F `  a )  =  (inl `  b
)  <->  E. z  e.  A  ( F `  a )  =  (inl `  z
) )  ->  if ( E. b  e.  A  ( F `  a )  =  (inl `  b
) ,  (/) ,  1o )  =  if ( E. z  e.  A  ( F `  a )  =  (inl `  z
) ,  (/) ,  1o ) )
75, 6ax-mp 5 . . . 4  |-  if ( E. b  e.  A  ( F `  a )  =  (inl `  b
) ,  (/) ,  1o )  =  if ( E. z  e.  A  ( F `  a )  =  (inl `  z
) ,  (/) ,  1o )
87mpteq2i 4116 . . 3  |-  ( a  e.  O  |->  if ( E. b  e.  A  ( F `  a )  =  (inl `  b
) ,  (/) ,  1o ) )  =  ( a  e.  O  |->  if ( E. z  e.  A  ( F `  a )  =  (inl
`  z ) ,  (/) ,  1o ) )
9 fveq2 5554 . . . . . . 7  |-  ( a  =  y  ->  ( F `  a )  =  ( F `  y ) )
109eqeq1d 2202 . . . . . 6  |-  ( a  =  y  ->  (
( F `  a
)  =  (inl `  z )  <->  ( F `  y )  =  (inl
`  z ) ) )
1110rexbidv 2495 . . . . 5  |-  ( a  =  y  ->  ( E. z  e.  A  ( F `  a )  =  (inl `  z
)  <->  E. z  e.  A  ( F `  y )  =  (inl `  z
) ) )
1211ifbid 3578 . . . 4  |-  ( a  =  y  ->  if ( E. z  e.  A  ( F `  a )  =  (inl `  z
) ,  (/) ,  1o )  =  if ( E. z  e.  A  ( F `  y )  =  (inl `  z
) ,  (/) ,  1o ) )
1312cbvmptv 4125 . . 3  |-  ( a  e.  O  |->  if ( E. z  e.  A  ( F `  a )  =  (inl `  z
) ,  (/) ,  1o ) )  =  ( y  e.  O  |->  if ( E. z  e.  A  ( F `  y )  =  (inl
`  z ) ,  (/) ,  1o ) )
148, 13eqtri 2214 . 2  |-  ( a  e.  O  |->  if ( E. b  e.  A  ( F `  a )  =  (inl `  b
) ,  (/) ,  1o ) )  =  ( y  e.  O  |->  if ( E. z  e.  A  ( F `  y )  =  (inl
`  z ) ,  (/) ,  1o ) )
151, 2, 14fodjuomnilemres 7207 1  |-  ( ph  ->  ( E. x  x  e.  A  \/  A  =  (/) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    \/ wo 709    = wceq 1364   E.wex 1503    e. wcel 2164   E.wrex 2473   (/)c0 3446   ifcif 3557    |-> cmpt 4090   -onto->wfo 5252   ` cfv 5254   1oc1o 6462   ⊔ cdju 7096  inlcinl 7104  Omnicomni 7193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-iord 4397  df-on 4399  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-1o 6469  df-2o 6470  df-map 6704  df-dju 7097  df-inl 7106  df-inr 7107  df-omni 7194
This theorem is referenced by:  ctssexmid  7209  exmidunben  12583  exmidsbthrlem  15512  sbthomlem  15515
  Copyright terms: Public domain W3C validator