Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fodjuomni | Unicode version |
Description: A condition which ensures is either inhabited or empty. Lemma 3.2 of [PradicBrown2022], p. 4. (Contributed by Jim Kingdon, 27-Jul-2022.) |
Ref | Expression |
---|---|
fodjuomni.o | Omni |
fodjuomni.fo | ⊔ |
Ref | Expression |
---|---|
fodjuomni |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fodjuomni.o | . 2 Omni | |
2 | fodjuomni.fo | . 2 ⊔ | |
3 | fveq2 5486 | . . . . . . 7 inl inl | |
4 | 3 | eqeq2d 2177 | . . . . . 6 inl inl |
5 | 4 | cbvrexv 2693 | . . . . 5 inl inl |
6 | ifbi 3540 | . . . . 5 inl inl inl inl | |
7 | 5, 6 | ax-mp 5 | . . . 4 inl inl |
8 | 7 | mpteq2i 4069 | . . 3 inl inl |
9 | fveq2 5486 | . . . . . . 7 | |
10 | 9 | eqeq1d 2174 | . . . . . 6 inl inl |
11 | 10 | rexbidv 2467 | . . . . 5 inl inl |
12 | 11 | ifbid 3541 | . . . 4 inl inl |
13 | 12 | cbvmptv 4078 | . . 3 inl inl |
14 | 8, 13 | eqtri 2186 | . 2 inl inl |
15 | 1, 2, 14 | fodjuomnilemres 7112 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wo 698 wceq 1343 wex 1480 wcel 2136 wrex 2445 c0 3409 cif 3520 cmpt 4043 wfo 5186 cfv 5188 c1o 6377 ⊔ cdju 7002 inlcinl 7010 Omnicomni 7098 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-if 3521 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-iord 4344 df-on 4346 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-1o 6384 df-2o 6385 df-map 6616 df-dju 7003 df-inl 7012 df-inr 7013 df-omni 7099 |
This theorem is referenced by: ctssexmid 7114 exmidunben 12359 exmidsbthrlem 13901 sbthomlem 13904 |
Copyright terms: Public domain | W3C validator |