ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fodjuomni Unicode version

Theorem fodjuomni 7210
Description: A condition which ensures  A is either inhabited or empty. Lemma 3.2 of [PradicBrown2022], p. 4. (Contributed by Jim Kingdon, 27-Jul-2022.)
Hypotheses
Ref Expression
fodjuomni.o  |-  ( ph  ->  O  e. Omni )
fodjuomni.fo  |-  ( ph  ->  F : O -onto-> ( A B ) )
Assertion
Ref Expression
fodjuomni  |-  ( ph  ->  ( E. x  x  e.  A  \/  A  =  (/) ) )
Distinct variable group:    x, A
Allowed substitution hints:    ph( x)    B( x)    F( x)    O( x)

Proof of Theorem fodjuomni
Dummy variables  a  b  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fodjuomni.o . 2  |-  ( ph  ->  O  e. Omni )
2 fodjuomni.fo . 2  |-  ( ph  ->  F : O -onto-> ( A B ) )
3 fveq2 5555 . . . . . . 7  |-  ( b  =  z  ->  (inl `  b )  =  (inl
`  z ) )
43eqeq2d 2205 . . . . . 6  |-  ( b  =  z  ->  (
( F `  a
)  =  (inl `  b )  <->  ( F `  a )  =  (inl
`  z ) ) )
54cbvrexv 2727 . . . . 5  |-  ( E. b  e.  A  ( F `  a )  =  (inl `  b
)  <->  E. z  e.  A  ( F `  a )  =  (inl `  z
) )
6 ifbi 3578 . . . . 5  |-  ( ( E. b  e.  A  ( F `  a )  =  (inl `  b
)  <->  E. z  e.  A  ( F `  a )  =  (inl `  z
) )  ->  if ( E. b  e.  A  ( F `  a )  =  (inl `  b
) ,  (/) ,  1o )  =  if ( E. z  e.  A  ( F `  a )  =  (inl `  z
) ,  (/) ,  1o ) )
75, 6ax-mp 5 . . . 4  |-  if ( E. b  e.  A  ( F `  a )  =  (inl `  b
) ,  (/) ,  1o )  =  if ( E. z  e.  A  ( F `  a )  =  (inl `  z
) ,  (/) ,  1o )
87mpteq2i 4117 . . 3  |-  ( a  e.  O  |->  if ( E. b  e.  A  ( F `  a )  =  (inl `  b
) ,  (/) ,  1o ) )  =  ( a  e.  O  |->  if ( E. z  e.  A  ( F `  a )  =  (inl
`  z ) ,  (/) ,  1o ) )
9 fveq2 5555 . . . . . . 7  |-  ( a  =  y  ->  ( F `  a )  =  ( F `  y ) )
109eqeq1d 2202 . . . . . 6  |-  ( a  =  y  ->  (
( F `  a
)  =  (inl `  z )  <->  ( F `  y )  =  (inl
`  z ) ) )
1110rexbidv 2495 . . . . 5  |-  ( a  =  y  ->  ( E. z  e.  A  ( F `  a )  =  (inl `  z
)  <->  E. z  e.  A  ( F `  y )  =  (inl `  z
) ) )
1211ifbid 3579 . . . 4  |-  ( a  =  y  ->  if ( E. z  e.  A  ( F `  a )  =  (inl `  z
) ,  (/) ,  1o )  =  if ( E. z  e.  A  ( F `  y )  =  (inl `  z
) ,  (/) ,  1o ) )
1312cbvmptv 4126 . . 3  |-  ( a  e.  O  |->  if ( E. z  e.  A  ( F `  a )  =  (inl `  z
) ,  (/) ,  1o ) )  =  ( y  e.  O  |->  if ( E. z  e.  A  ( F `  y )  =  (inl
`  z ) ,  (/) ,  1o ) )
148, 13eqtri 2214 . 2  |-  ( a  e.  O  |->  if ( E. b  e.  A  ( F `  a )  =  (inl `  b
) ,  (/) ,  1o ) )  =  ( y  e.  O  |->  if ( E. z  e.  A  ( F `  y )  =  (inl
`  z ) ,  (/) ,  1o ) )
151, 2, 14fodjuomnilemres 7209 1  |-  ( ph  ->  ( E. x  x  e.  A  \/  A  =  (/) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    \/ wo 709    = wceq 1364   E.wex 1503    e. wcel 2164   E.wrex 2473   (/)c0 3447   ifcif 3558    |-> cmpt 4091   -onto->wfo 5253   ` cfv 5255   1oc1o 6464   ⊔ cdju 7098  inlcinl 7106  Omnicomni 7195
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-iord 4398  df-on 4400  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-1o 6471  df-2o 6472  df-map 6706  df-dju 7099  df-inl 7108  df-inr 7109  df-omni 7196
This theorem is referenced by:  ctssexmid  7211  exmidunben  12586  exmidsbthrlem  15582  sbthomlem  15585
  Copyright terms: Public domain W3C validator