ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fodjumkv Unicode version

Theorem fodjumkv 7235
Description: A condition which ensures that a nonempty set is inhabited. (Contributed by Jim Kingdon, 25-Mar-2023.)
Hypotheses
Ref Expression
fodjumkv.o  |-  ( ph  ->  M  e. Markov )
fodjumkv.fo  |-  ( ph  ->  F : M -onto-> ( A B ) )
Assertion
Ref Expression
fodjumkv  |-  ( ph  ->  ( A  =/=  (/)  ->  E. x  x  e.  A )
)
Distinct variable group:    x, A
Allowed substitution hints:    ph( x)    B( x)    F( x)    M( x)

Proof of Theorem fodjumkv
Dummy variables  a  b  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fodjumkv.o . 2  |-  ( ph  ->  M  e. Markov )
2 fodjumkv.fo . 2  |-  ( ph  ->  F : M -onto-> ( A B ) )
3 fveq2 5561 . . . . . . 7  |-  ( b  =  z  ->  (inl `  b )  =  (inl
`  z ) )
43eqeq2d 2208 . . . . . 6  |-  ( b  =  z  ->  (
( F `  a
)  =  (inl `  b )  <->  ( F `  a )  =  (inl
`  z ) ) )
54cbvrexv 2730 . . . . 5  |-  ( E. b  e.  A  ( F `  a )  =  (inl `  b
)  <->  E. z  e.  A  ( F `  a )  =  (inl `  z
) )
6 ifbi 3582 . . . . 5  |-  ( ( E. b  e.  A  ( F `  a )  =  (inl `  b
)  <->  E. z  e.  A  ( F `  a )  =  (inl `  z
) )  ->  if ( E. b  e.  A  ( F `  a )  =  (inl `  b
) ,  (/) ,  1o )  =  if ( E. z  e.  A  ( F `  a )  =  (inl `  z
) ,  (/) ,  1o ) )
75, 6ax-mp 5 . . . 4  |-  if ( E. b  e.  A  ( F `  a )  =  (inl `  b
) ,  (/) ,  1o )  =  if ( E. z  e.  A  ( F `  a )  =  (inl `  z
) ,  (/) ,  1o )
87mpteq2i 4121 . . 3  |-  ( a  e.  M  |->  if ( E. b  e.  A  ( F `  a )  =  (inl `  b
) ,  (/) ,  1o ) )  =  ( a  e.  M  |->  if ( E. z  e.  A  ( F `  a )  =  (inl
`  z ) ,  (/) ,  1o ) )
9 fveqeq2 5570 . . . . . 6  |-  ( a  =  y  ->  (
( F `  a
)  =  (inl `  z )  <->  ( F `  y )  =  (inl
`  z ) ) )
109rexbidv 2498 . . . . 5  |-  ( a  =  y  ->  ( E. z  e.  A  ( F `  a )  =  (inl `  z
)  <->  E. z  e.  A  ( F `  y )  =  (inl `  z
) ) )
1110ifbid 3583 . . . 4  |-  ( a  =  y  ->  if ( E. z  e.  A  ( F `  a )  =  (inl `  z
) ,  (/) ,  1o )  =  if ( E. z  e.  A  ( F `  y )  =  (inl `  z
) ,  (/) ,  1o ) )
1211cbvmptv 4130 . . 3  |-  ( a  e.  M  |->  if ( E. z  e.  A  ( F `  a )  =  (inl `  z
) ,  (/) ,  1o ) )  =  ( y  e.  M  |->  if ( E. z  e.  A  ( F `  y )  =  (inl
`  z ) ,  (/) ,  1o ) )
138, 12eqtri 2217 . 2  |-  ( a  e.  M  |->  if ( E. b  e.  A  ( F `  a )  =  (inl `  b
) ,  (/) ,  1o ) )  =  ( y  e.  M  |->  if ( E. z  e.  A  ( F `  y )  =  (inl
`  z ) ,  (/) ,  1o ) )
141, 2, 13fodjumkvlemres 7234 1  |-  ( ph  ->  ( A  =/=  (/)  ->  E. x  x  e.  A )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1364   E.wex 1506    e. wcel 2167    =/= wne 2367   E.wrex 2476   (/)c0 3451   ifcif 3562    |-> cmpt 4095   -onto->wfo 5257   ` cfv 5259   1oc1o 6476   ⊔ cdju 7112  inlcinl 7120  Markovcmarkov 7226
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-iord 4402  df-on 4404  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-1o 6483  df-2o 6484  df-map 6718  df-dju 7113  df-inl 7122  df-inr 7123  df-markov 7227
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator