| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lgsdi | Unicode version | ||
| Description: The Legendre symbol is
completely multiplicative in its right
argument. Generalization of theorem 9.9(b) in [ApostolNT] p. 188
(which assumes that |
| Ref | Expression |
|---|---|
| lgsdi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3anrot 985 |
. . . . 5
| |
| 2 | lgsdilem 15352 |
. . . . 5
| |
| 3 | 1, 2 | sylanb 284 |
. . . 4
|
| 4 | ancom 266 |
. . . . 5
| |
| 5 | ifbi 3582 |
. . . . 5
| |
| 6 | 4, 5 | ax-mp 5 |
. . . 4
|
| 7 | ancom 266 |
. . . . . 6
| |
| 8 | ifbi 3582 |
. . . . . 6
| |
| 9 | 7, 8 | ax-mp 5 |
. . . . 5
|
| 10 | ancom 266 |
. . . . . 6
| |
| 11 | ifbi 3582 |
. . . . . 6
| |
| 12 | 10, 11 | ax-mp 5 |
. . . . 5
|
| 13 | 9, 12 | oveq12i 5937 |
. . . 4
|
| 14 | 3, 6, 13 | 3eqtr4g 2254 |
. . 3
|
| 15 | simpl2 1003 |
. . . . . . . 8
| |
| 16 | simpl3 1004 |
. . . . . . . 8
| |
| 17 | 15, 16 | zmulcld 9471 |
. . . . . . 7
|
| 18 | 15 | zcnd 9466 |
. . . . . . . . 9
|
| 19 | 16 | zcnd 9466 |
. . . . . . . . 9
|
| 20 | simprl 529 |
. . . . . . . . . 10
| |
| 21 | 0z 9354 |
. . . . . . . . . . 11
| |
| 22 | zapne 9417 |
. . . . . . . . . . 11
| |
| 23 | 15, 21, 22 | sylancl 413 |
. . . . . . . . . 10
|
| 24 | 20, 23 | mpbird 167 |
. . . . . . . . 9
|
| 25 | simprr 531 |
. . . . . . . . . 10
| |
| 26 | zapne 9417 |
. . . . . . . . . . 11
| |
| 27 | 16, 21, 26 | sylancl 413 |
. . . . . . . . . 10
|
| 28 | 25, 27 | mpbird 167 |
. . . . . . . . 9
|
| 29 | 18, 19, 24, 28 | mulap0d 8702 |
. . . . . . . 8
|
| 30 | zapne 9417 |
. . . . . . . . 9
| |
| 31 | 17, 21, 30 | sylancl 413 |
. . . . . . . 8
|
| 32 | 29, 31 | mpbid 147 |
. . . . . . 7
|
| 33 | nnabscl 11282 |
. . . . . . 7
| |
| 34 | 17, 32, 33 | syl2anc 411 |
. . . . . 6
|
| 35 | nnuz 9654 |
. . . . . 6
| |
| 36 | 34, 35 | eleqtrdi 2289 |
. . . . 5
|
| 37 | simpl1 1002 |
. . . . . . . 8
| |
| 38 | eqid 2196 |
. . . . . . . . 9
| |
| 39 | 38 | lgsfcl3 15346 |
. . . . . . . 8
|
| 40 | 37, 15, 20, 39 | syl3anc 1249 |
. . . . . . 7
|
| 41 | elnnuz 9655 |
. . . . . . . 8
| |
| 42 | 41 | biimpri 133 |
. . . . . . 7
|
| 43 | ffvelcdm 5698 |
. . . . . . 7
| |
| 44 | 40, 42, 43 | syl2an 289 |
. . . . . 6
|
| 45 | 44 | zcnd 9466 |
. . . . 5
|
| 46 | eqid 2196 |
. . . . . . . . 9
| |
| 47 | 46 | lgsfcl3 15346 |
. . . . . . . 8
|
| 48 | 37, 16, 25, 47 | syl3anc 1249 |
. . . . . . 7
|
| 49 | ffvelcdm 5698 |
. . . . . . 7
| |
| 50 | 48, 42, 49 | syl2an 289 |
. . . . . 6
|
| 51 | 50 | zcnd 9466 |
. . . . 5
|
| 52 | simpr 110 |
. . . . . . . . . . 11
| |
| 53 | 15 | ad2antrr 488 |
. . . . . . . . . . 11
|
| 54 | 20 | ad2antrr 488 |
. . . . . . . . . . 11
|
| 55 | 16 | ad2antrr 488 |
. . . . . . . . . . 11
|
| 56 | 25 | ad2antrr 488 |
. . . . . . . . . . 11
|
| 57 | pcmul 12495 |
. . . . . . . . . . 11
| |
| 58 | 52, 53, 54, 55, 56, 57 | syl122anc 1258 |
. . . . . . . . . 10
|
| 59 | 58 | oveq2d 5941 |
. . . . . . . . 9
|
| 60 | 37 | ad2antrr 488 |
. . . . . . . . . . . 12
|
| 61 | prmz 12304 |
. . . . . . . . . . . . 13
| |
| 62 | 61 | adantl 277 |
. . . . . . . . . . . 12
|
| 63 | lgscl 15339 |
. . . . . . . . . . . 12
| |
| 64 | 60, 62, 63 | syl2anc 411 |
. . . . . . . . . . 11
|
| 65 | 64 | zcnd 9466 |
. . . . . . . . . 10
|
| 66 | pczcl 12492 |
. . . . . . . . . . 11
| |
| 67 | 52, 55, 56, 66 | syl12anc 1247 |
. . . . . . . . . 10
|
| 68 | pczcl 12492 |
. . . . . . . . . . 11
| |
| 69 | 52, 53, 54, 68 | syl12anc 1247 |
. . . . . . . . . 10
|
| 70 | 65, 67, 69 | expaddd 10784 |
. . . . . . . . 9
|
| 71 | 59, 70 | eqtrd 2229 |
. . . . . . . 8
|
| 72 | iftrue 3567 |
. . . . . . . . 9
| |
| 73 | 72 | adantl 277 |
. . . . . . . 8
|
| 74 | iftrue 3567 |
. . . . . . . . . 10
| |
| 75 | iftrue 3567 |
. . . . . . . . . 10
| |
| 76 | 74, 75 | oveq12d 5943 |
. . . . . . . . 9
|
| 77 | 76 | adantl 277 |
. . . . . . . 8
|
| 78 | 71, 73, 77 | 3eqtr4rd 2240 |
. . . . . . 7
|
| 79 | 1t1e1 9160 |
. . . . . . . . 9
| |
| 80 | iffalse 3570 |
. . . . . . . . . 10
| |
| 81 | iffalse 3570 |
. . . . . . . . . 10
| |
| 82 | 80, 81 | oveq12d 5943 |
. . . . . . . . 9
|
| 83 | iffalse 3570 |
. . . . . . . . 9
| |
| 84 | 79, 82, 83 | 3eqtr4a 2255 |
. . . . . . . 8
|
| 85 | 84 | adantl 277 |
. . . . . . 7
|
| 86 | prmdc 12323 |
. . . . . . . . . 10
| |
| 87 | exmiddc 837 |
. . . . . . . . . 10
| |
| 88 | 86, 87 | syl 14 |
. . . . . . . . 9
|
| 89 | 42, 88 | syl 14 |
. . . . . . . 8
|
| 90 | 89 | adantl 277 |
. . . . . . 7
|
| 91 | 78, 85, 90 | mpjaodan 799 |
. . . . . 6
|
| 92 | eleq1w 2257 |
. . . . . . . . 9
| |
| 93 | oveq2 5933 |
. . . . . . . . . 10
| |
| 94 | oveq1 5932 |
. . . . . . . . . 10
| |
| 95 | 93, 94 | oveq12d 5943 |
. . . . . . . . 9
|
| 96 | 92, 95 | ifbieq1d 3584 |
. . . . . . . 8
|
| 97 | 42 | adantl 277 |
. . . . . . . 8
|
| 98 | zexpcl 10663 |
. . . . . . . . . 10
| |
| 99 | 64, 69, 98 | syl2anc 411 |
. . . . . . . . 9
|
| 100 | 1zzd 9370 |
. . . . . . . . 9
| |
| 101 | 97, 86 | syl 14 |
. . . . . . . . 9
|
| 102 | 99, 100, 101 | ifcldadc 3591 |
. . . . . . . 8
|
| 103 | 38, 96, 97, 102 | fvmptd3 5658 |
. . . . . . 7
|
| 104 | oveq1 5932 |
. . . . . . . . . 10
| |
| 105 | 93, 104 | oveq12d 5943 |
. . . . . . . . 9
|
| 106 | 92, 105 | ifbieq1d 3584 |
. . . . . . . 8
|
| 107 | zexpcl 10663 |
. . . . . . . . . 10
| |
| 108 | 64, 67, 107 | syl2anc 411 |
. . . . . . . . 9
|
| 109 | 108, 100, 101 | ifcldadc 3591 |
. . . . . . . 8
|
| 110 | 46, 106, 97, 109 | fvmptd3 5658 |
. . . . . . 7
|
| 111 | 103, 110 | oveq12d 5943 |
. . . . . 6
|
| 112 | eqid 2196 |
. . . . . . 7
| |
| 113 | oveq1 5932 |
. . . . . . . . 9
| |
| 114 | 93, 113 | oveq12d 5943 |
. . . . . . . 8
|
| 115 | 92, 114 | ifbieq1d 3584 |
. . . . . . 7
|
| 116 | 17 | ad2antrr 488 |
. . . . . . . . . 10
|
| 117 | 32 | ad2antrr 488 |
. . . . . . . . . 10
|
| 118 | pczcl 12492 |
. . . . . . . . . 10
| |
| 119 | 52, 116, 117, 118 | syl12anc 1247 |
. . . . . . . . 9
|
| 120 | zexpcl 10663 |
. . . . . . . . 9
| |
| 121 | 64, 119, 120 | syl2anc 411 |
. . . . . . . 8
|
| 122 | 121, 100, 101 | ifcldadc 3591 |
. . . . . . 7
|
| 123 | 112, 115, 97, 122 | fvmptd3 5658 |
. . . . . 6
|
| 124 | 91, 111, 123 | 3eqtr4rd 2240 |
. . . . 5
|
| 125 | 36, 45, 51, 124 | prod3fmul 11723 |
. . . 4
|
| 126 | 37, 15, 16, 20, 25, 38 | lgsdilem2 15361 |
. . . . 5
|
| 127 | 37, 16, 15, 25, 20, 46 | lgsdilem2 15361 |
. . . . . 6
|
| 128 | 18, 19 | mulcomd 8065 |
. . . . . . . 8
|
| 129 | 128 | fveq2d 5565 |
. . . . . . 7
|
| 130 | 129 | fveq2d 5565 |
. . . . . 6
|
| 131 | 127, 130 | eqtr4d 2232 |
. . . . 5
|
| 132 | 126, 131 | oveq12d 5943 |
. . . 4
|
| 133 | 125, 132 | eqtr4d 2232 |
. . 3
|
| 134 | 14, 133 | oveq12d 5943 |
. 2
|
| 135 | 112 | lgsval4 15345 |
. . 3
|
| 136 | 37, 17, 32, 135 | syl3anc 1249 |
. 2
|
| 137 | 38 | lgsval4 15345 |
. . . . 5
|
| 138 | 37, 15, 20, 137 | syl3anc 1249 |
. . . 4
|
| 139 | 46 | lgsval4 15345 |
. . . . 5
|
| 140 | 37, 16, 25, 139 | syl3anc 1249 |
. . . 4
|
| 141 | 138, 140 | oveq12d 5943 |
. . 3
|
| 142 | neg1z 9375 |
. . . . . . 7
| |
| 143 | 142 | a1i 9 |
. . . . . 6
|
| 144 | 1zzd 9370 |
. . . . . 6
| |
| 145 | zdclt 9420 |
. . . . . . . 8
| |
| 146 | 15, 21, 145 | sylancl 413 |
. . . . . . 7
|
| 147 | zdclt 9420 |
. . . . . . . 8
| |
| 148 | 37, 21, 147 | sylancl 413 |
. . . . . . 7
|
| 149 | dcan2 936 |
. . . . . . 7
| |
| 150 | 146, 148, 149 | sylc 62 |
. . . . . 6
|
| 151 | 143, 144, 150 | ifcldcd 3598 |
. . . . 5
|
| 152 | 151 | zcnd 9466 |
. . . 4
|
| 153 | 40 | ffvelcdmda 5700 |
. . . . . . 7
|
| 154 | zmulcl 9396 |
. . . . . . . 8
| |
| 155 | 154 | adantl 277 |
. . . . . . 7
|
| 156 | 35, 144, 153, 155 | seqf 10573 |
. . . . . 6
|
| 157 | nnabscl 11282 |
. . . . . . 7
| |
| 158 | 15, 20, 157 | syl2anc 411 |
. . . . . 6
|
| 159 | 156, 158 | ffvelcdmd 5701 |
. . . . 5
|
| 160 | 159 | zcnd 9466 |
. . . 4
|
| 161 | zdclt 9420 |
. . . . . . . 8
| |
| 162 | 16, 21, 161 | sylancl 413 |
. . . . . . 7
|
| 163 | dcan2 936 |
. . . . . . 7
| |
| 164 | 162, 148, 163 | sylc 62 |
. . . . . 6
|
| 165 | 143, 144, 164 | ifcldcd 3598 |
. . . . 5
|
| 166 | 165 | zcnd 9466 |
. . . 4
|
| 167 | 48 | ffvelcdmda 5700 |
. . . . . . 7
|
| 168 | 35, 144, 167, 155 | seqf 10573 |
. . . . . 6
|
| 169 | nnabscl 11282 |
. . . . . . 7
| |
| 170 | 16, 25, 169 | syl2anc 411 |
. . . . . 6
|
| 171 | 168, 170 | ffvelcdmd 5701 |
. . . . 5
|
| 172 | 171 | zcnd 9466 |
. . . 4
|
| 173 | 152, 160, 166, 172 | mul4d 8198 |
. . 3
|
| 174 | 141, 173 | eqtrd 2229 |
. 2
|
| 175 | 134, 136, 174 | 3eqtr4d 2239 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-mulrcl 7995 ax-addcom 7996 ax-mulcom 7997 ax-addass 7998 ax-mulass 7999 ax-distr 8000 ax-i2m1 8001 ax-0lt1 8002 ax-1rid 8003 ax-0id 8004 ax-rnegex 8005 ax-precex 8006 ax-cnre 8007 ax-pre-ltirr 8008 ax-pre-ltwlin 8009 ax-pre-lttrn 8010 ax-pre-apti 8011 ax-pre-ltadd 8012 ax-pre-mulgt0 8013 ax-pre-mulext 8014 ax-arch 8015 ax-caucvg 8016 |
| This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-xor 1387 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-if 3563 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-id 4329 df-po 4332 df-iso 4333 df-iord 4402 df-on 4404 df-ilim 4405 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-isom 5268 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-recs 6372 df-irdg 6437 df-frec 6458 df-1o 6483 df-2o 6484 df-oadd 6487 df-er 6601 df-en 6809 df-dom 6810 df-fin 6811 df-sup 7059 df-inf 7060 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 df-le 8084 df-sub 8216 df-neg 8217 df-reap 8619 df-ap 8626 df-div 8717 df-inn 9008 df-2 9066 df-3 9067 df-4 9068 df-5 9069 df-6 9070 df-7 9071 df-8 9072 df-n0 9267 df-z 9344 df-uz 9619 df-q 9711 df-rp 9746 df-fz 10101 df-fzo 10235 df-fl 10377 df-mod 10432 df-seqfrec 10557 df-exp 10648 df-ihash 10885 df-cj 11024 df-re 11025 df-im 11026 df-rsqrt 11180 df-abs 11181 df-clim 11461 df-proddc 11733 df-dvds 11970 df-gcd 12146 df-prm 12301 df-phi 12404 df-pc 12479 df-lgs 15323 |
| This theorem is referenced by: lgssq2 15366 lgsdinn0 15373 lgsquad2lem1 15406 |
| Copyright terms: Public domain | W3C validator |