ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lgsdi Unicode version

Theorem lgsdi 14105
Description: The Legendre symbol is completely multiplicative in its right argument. Generalization of theorem 9.9(b) in [ApostolNT] p. 188 (which assumes that  M and  N are odd positive integers). (Contributed by Mario Carneiro, 5-Feb-2015.)
Assertion
Ref Expression
lgsdi  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  ->  ( A  /L ( M  x.  N ) )  =  ( ( A  /L M )  x.  ( A  /L N ) ) )

Proof of Theorem lgsdi
Dummy variables  k  n  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 3anrot 983 . . . . 5  |-  ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  <->  ( M  e.  ZZ  /\  N  e.  ZZ  /\  A  e.  ZZ ) )
2 lgsdilem 14095 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  A  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  ->  if ( ( A  <  0  /\  ( M  x.  N )  <  0 ) ,  -u
1 ,  1 )  =  ( if ( ( A  <  0  /\  M  <  0
) ,  -u 1 ,  1 )  x.  if ( ( A  <  0  /\  N  <  0 ) ,  -u
1 ,  1 ) ) )
31, 2sylanb 284 . . . 4  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  ->  if ( ( A  <  0  /\  ( M  x.  N )  <  0 ) ,  -u
1 ,  1 )  =  ( if ( ( A  <  0  /\  M  <  0
) ,  -u 1 ,  1 )  x.  if ( ( A  <  0  /\  N  <  0 ) ,  -u
1 ,  1 ) ) )
4 ancom 266 . . . . 5  |-  ( ( ( M  x.  N
)  <  0  /\  A  <  0 )  <->  ( A  <  0  /\  ( M  x.  N )  <  0 ) )
5 ifbi 3554 . . . . 5  |-  ( ( ( ( M  x.  N )  <  0  /\  A  <  0
)  <->  ( A  <  0  /\  ( M  x.  N )  <  0 ) )  ->  if ( ( ( M  x.  N )  <  0  /\  A  <  0 ) ,  -u
1 ,  1 )  =  if ( ( A  <  0  /\  ( M  x.  N
)  <  0 ) ,  -u 1 ,  1 ) )
64, 5ax-mp 5 . . . 4  |-  if ( ( ( M  x.  N )  <  0  /\  A  <  0
) ,  -u 1 ,  1 )  =  if ( ( A  <  0  /\  ( M  x.  N )  <  0 ) ,  -u
1 ,  1 )
7 ancom 266 . . . . . 6  |-  ( ( M  <  0  /\  A  <  0 )  <-> 
( A  <  0  /\  M  <  0
) )
8 ifbi 3554 . . . . . 6  |-  ( ( ( M  <  0  /\  A  <  0
)  <->  ( A  <  0  /\  M  <  0 ) )  ->  if ( ( M  <  0  /\  A  <  0 ) ,  -u
1 ,  1 )  =  if ( ( A  <  0  /\  M  <  0 ) ,  -u 1 ,  1 ) )
97, 8ax-mp 5 . . . . 5  |-  if ( ( M  <  0  /\  A  <  0
) ,  -u 1 ,  1 )  =  if ( ( A  <  0  /\  M  <  0 ) ,  -u
1 ,  1 )
10 ancom 266 . . . . . 6  |-  ( ( N  <  0  /\  A  <  0 )  <-> 
( A  <  0  /\  N  <  0
) )
11 ifbi 3554 . . . . . 6  |-  ( ( ( N  <  0  /\  A  <  0
)  <->  ( A  <  0  /\  N  <  0 ) )  ->  if ( ( N  <  0  /\  A  <  0 ) ,  -u
1 ,  1 )  =  if ( ( A  <  0  /\  N  <  0 ) ,  -u 1 ,  1 ) )
1210, 11ax-mp 5 . . . . 5  |-  if ( ( N  <  0  /\  A  <  0
) ,  -u 1 ,  1 )  =  if ( ( A  <  0  /\  N  <  0 ) ,  -u
1 ,  1 )
139, 12oveq12i 5881 . . . 4  |-  ( if ( ( M  <  0  /\  A  <  0 ) ,  -u
1 ,  1 )  x.  if ( ( N  <  0  /\  A  <  0 ) ,  -u 1 ,  1 ) )  =  ( if ( ( A  <  0  /\  M  <  0 ) ,  -u
1 ,  1 )  x.  if ( ( A  <  0  /\  N  <  0 ) ,  -u 1 ,  1 ) )
143, 6, 133eqtr4g 2235 . . 3  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  ->  if ( ( ( M  x.  N )  <  0  /\  A  <  0 ) ,  -u
1 ,  1 )  =  ( if ( ( M  <  0  /\  A  <  0
) ,  -u 1 ,  1 )  x.  if ( ( N  <  0  /\  A  <  0 ) ,  -u
1 ,  1 ) ) )
15 simpl2 1001 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  ->  M  e.  ZZ )
16 simpl3 1002 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  ->  N  e.  ZZ )
1715, 16zmulcld 9370 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  ->  ( M  x.  N )  e.  ZZ )
1815zcnd 9365 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  ->  M  e.  CC )
1916zcnd 9365 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  ->  N  e.  CC )
20 simprl 529 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  ->  M  =/=  0 )
21 0z 9253 . . . . . . . . . . 11  |-  0  e.  ZZ
22 zapne 9316 . . . . . . . . . . 11  |-  ( ( M  e.  ZZ  /\  0  e.  ZZ )  ->  ( M #  0  <->  M  =/=  0 ) )
2315, 21, 22sylancl 413 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  ->  ( M #  0  <->  M  =/=  0
) )
2420, 23mpbird 167 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  ->  M #  0 )
25 simprr 531 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  ->  N  =/=  0 )
26 zapne 9316 . . . . . . . . . . 11  |-  ( ( N  e.  ZZ  /\  0  e.  ZZ )  ->  ( N #  0  <->  N  =/=  0 ) )
2716, 21, 26sylancl 413 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  ->  ( N #  0  <->  N  =/=  0
) )
2825, 27mpbird 167 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  ->  N #  0 )
2918, 19, 24, 28mulap0d 8604 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  ->  ( M  x.  N ) #  0 )
30 zapne 9316 . . . . . . . . 9  |-  ( ( ( M  x.  N
)  e.  ZZ  /\  0  e.  ZZ )  ->  ( ( M  x.  N ) #  0  <->  ( M  x.  N )  =/=  0
) )
3117, 21, 30sylancl 413 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  ->  (
( M  x.  N
) #  0  <->  ( M  x.  N )  =/=  0
) )
3229, 31mpbid 147 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  ->  ( M  x.  N )  =/=  0 )
33 nnabscl 11093 . . . . . . 7  |-  ( ( ( M  x.  N
)  e.  ZZ  /\  ( M  x.  N
)  =/=  0 )  ->  ( abs `  ( M  x.  N )
)  e.  NN )
3417, 32, 33syl2anc 411 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  ->  ( abs `  ( M  x.  N ) )  e.  NN )
35 nnuz 9552 . . . . . 6  |-  NN  =  ( ZZ>= `  1 )
3634, 35eleqtrdi 2270 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  ->  ( abs `  ( M  x.  N ) )  e.  ( ZZ>= `  1 )
)
37 simpl1 1000 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  ->  A  e.  ZZ )
38 eqid 2177 . . . . . . . . 9  |-  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L
n ) ^ (
n  pCnt  M )
) ,  1 ) )  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L
n ) ^ (
n  pCnt  M )
) ,  1 ) )
3938lgsfcl3 14089 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  M  =/=  0 )  ->  (
n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  M
) ) ,  1 ) ) : NN --> ZZ )
4037, 15, 20, 39syl3anc 1238 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  ->  (
n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  M
) ) ,  1 ) ) : NN --> ZZ )
41 elnnuz 9553 . . . . . . . 8  |-  ( k  e.  NN  <->  k  e.  ( ZZ>= `  1 )
)
4241biimpri 133 . . . . . . 7  |-  ( k  e.  ( ZZ>= `  1
)  ->  k  e.  NN )
43 ffvelcdm 5645 . . . . . . 7  |-  ( ( ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  M
) ) ,  1 ) ) : NN --> ZZ  /\  k  e.  NN )  ->  ( ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L
n ) ^ (
n  pCnt  M )
) ,  1 ) ) `  k )  e.  ZZ )
4440, 42, 43syl2an 289 . . . . . 6  |-  ( ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0 ) )  /\  k  e.  ( ZZ>= ` 
1 ) )  -> 
( ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^ ( n 
pCnt  M ) ) ,  1 ) ) `  k )  e.  ZZ )
4544zcnd 9365 . . . . 5  |-  ( ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0 ) )  /\  k  e.  ( ZZ>= ` 
1 ) )  -> 
( ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^ ( n 
pCnt  M ) ) ,  1 ) ) `  k )  e.  CC )
46 eqid 2177 . . . . . . . . 9  |-  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L
n ) ^ (
n  pCnt  N )
) ,  1 ) )  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L
n ) ^ (
n  pCnt  N )
) ,  1 ) )
4746lgsfcl3 14089 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  (
n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) : NN --> ZZ )
4837, 16, 25, 47syl3anc 1238 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  ->  (
n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) : NN --> ZZ )
49 ffvelcdm 5645 . . . . . . 7  |-  ( ( ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) : NN --> ZZ  /\  k  e.  NN )  ->  ( ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L
n ) ^ (
n  pCnt  N )
) ,  1 ) ) `  k )  e.  ZZ )
5048, 42, 49syl2an 289 . . . . . 6  |-  ( ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0 ) )  /\  k  e.  ( ZZ>= ` 
1 ) )  -> 
( ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^ ( n 
pCnt  N ) ) ,  1 ) ) `  k )  e.  ZZ )
5150zcnd 9365 . . . . 5  |-  ( ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0 ) )  /\  k  e.  ( ZZ>= ` 
1 ) )  -> 
( ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^ ( n 
pCnt  N ) ) ,  1 ) ) `  k )  e.  CC )
52 simpr 110 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0 ) )  /\  k  e.  ( ZZ>= ` 
1 ) )  /\  k  e.  Prime )  -> 
k  e.  Prime )
5315ad2antrr 488 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0 ) )  /\  k  e.  ( ZZ>= ` 
1 ) )  /\  k  e.  Prime )  ->  M  e.  ZZ )
5420ad2antrr 488 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0 ) )  /\  k  e.  ( ZZ>= ` 
1 ) )  /\  k  e.  Prime )  ->  M  =/=  0 )
5516ad2antrr 488 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0 ) )  /\  k  e.  ( ZZ>= ` 
1 ) )  /\  k  e.  Prime )  ->  N  e.  ZZ )
5625ad2antrr 488 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0 ) )  /\  k  e.  ( ZZ>= ` 
1 ) )  /\  k  e.  Prime )  ->  N  =/=  0 )
57 pcmul 12284 . . . . . . . . . . 11  |-  ( ( k  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( k  pCnt  ( M  x.  N )
)  =  ( ( k  pCnt  M )  +  ( k  pCnt  N ) ) )
5852, 53, 54, 55, 56, 57syl122anc 1247 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0 ) )  /\  k  e.  ( ZZ>= ` 
1 ) )  /\  k  e.  Prime )  -> 
( k  pCnt  ( M  x.  N )
)  =  ( ( k  pCnt  M )  +  ( k  pCnt  N ) ) )
5958oveq2d 5885 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0 ) )  /\  k  e.  ( ZZ>= ` 
1 ) )  /\  k  e.  Prime )  -> 
( ( A  /L k ) ^
( k  pCnt  ( M  x.  N )
) )  =  ( ( A  /L
k ) ^ (
( k  pCnt  M
)  +  ( k 
pCnt  N ) ) ) )
6037ad2antrr 488 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0 ) )  /\  k  e.  ( ZZ>= ` 
1 ) )  /\  k  e.  Prime )  ->  A  e.  ZZ )
61 prmz 12094 . . . . . . . . . . . . 13  |-  ( k  e.  Prime  ->  k  e.  ZZ )
6261adantl 277 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0 ) )  /\  k  e.  ( ZZ>= ` 
1 ) )  /\  k  e.  Prime )  -> 
k  e.  ZZ )
63 lgscl 14082 . . . . . . . . . . . 12  |-  ( ( A  e.  ZZ  /\  k  e.  ZZ )  ->  ( A  /L
k )  e.  ZZ )
6460, 62, 63syl2anc 411 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0 ) )  /\  k  e.  ( ZZ>= ` 
1 ) )  /\  k  e.  Prime )  -> 
( A  /L
k )  e.  ZZ )
6564zcnd 9365 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0 ) )  /\  k  e.  ( ZZ>= ` 
1 ) )  /\  k  e.  Prime )  -> 
( A  /L
k )  e.  CC )
66 pczcl 12281 . . . . . . . . . . 11  |-  ( ( k  e.  Prime  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( k  pCnt  N
)  e.  NN0 )
6752, 55, 56, 66syl12anc 1236 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0 ) )  /\  k  e.  ( ZZ>= ` 
1 ) )  /\  k  e.  Prime )  -> 
( k  pCnt  N
)  e.  NN0 )
68 pczcl 12281 . . . . . . . . . . 11  |-  ( ( k  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 ) )  -> 
( k  pCnt  M
)  e.  NN0 )
6952, 53, 54, 68syl12anc 1236 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0 ) )  /\  k  e.  ( ZZ>= ` 
1 ) )  /\  k  e.  Prime )  -> 
( k  pCnt  M
)  e.  NN0 )
7065, 67, 69expaddd 10641 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0 ) )  /\  k  e.  ( ZZ>= ` 
1 ) )  /\  k  e.  Prime )  -> 
( ( A  /L k ) ^
( ( k  pCnt  M )  +  ( k 
pCnt  N ) ) )  =  ( ( ( A  /L k ) ^ ( k 
pCnt  M ) )  x.  ( ( A  /L k ) ^
( k  pCnt  N
) ) ) )
7159, 70eqtrd 2210 . . . . . . . 8  |-  ( ( ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0 ) )  /\  k  e.  ( ZZ>= ` 
1 ) )  /\  k  e.  Prime )  -> 
( ( A  /L k ) ^
( k  pCnt  ( M  x.  N )
) )  =  ( ( ( A  /L k ) ^
( k  pCnt  M
) )  x.  (
( A  /L
k ) ^ (
k  pCnt  N )
) ) )
72 iftrue 3539 . . . . . . . . 9  |-  ( k  e.  Prime  ->  if ( k  e.  Prime ,  ( ( A  /L
k ) ^ (
k  pCnt  ( M  x.  N ) ) ) ,  1 )  =  ( ( A  /L k ) ^
( k  pCnt  ( M  x.  N )
) ) )
7372adantl 277 . . . . . . . 8  |-  ( ( ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0 ) )  /\  k  e.  ( ZZ>= ` 
1 ) )  /\  k  e.  Prime )  ->  if ( k  e.  Prime ,  ( ( A  /L k ) ^
( k  pCnt  ( M  x.  N )
) ) ,  1 )  =  ( ( A  /L k ) ^ ( k 
pCnt  ( M  x.  N ) ) ) )
74 iftrue 3539 . . . . . . . . . 10  |-  ( k  e.  Prime  ->  if ( k  e.  Prime ,  ( ( A  /L
k ) ^ (
k  pCnt  M )
) ,  1 )  =  ( ( A  /L k ) ^ ( k  pCnt  M ) ) )
75 iftrue 3539 . . . . . . . . . 10  |-  ( k  e.  Prime  ->  if ( k  e.  Prime ,  ( ( A  /L
k ) ^ (
k  pCnt  N )
) ,  1 )  =  ( ( A  /L k ) ^ ( k  pCnt  N ) ) )
7674, 75oveq12d 5887 . . . . . . . . 9  |-  ( k  e.  Prime  ->  ( if ( k  e.  Prime ,  ( ( A  /L k ) ^
( k  pCnt  M
) ) ,  1 )  x.  if ( k  e.  Prime ,  ( ( A  /L
k ) ^ (
k  pCnt  N )
) ,  1 ) )  =  ( ( ( A  /L
k ) ^ (
k  pCnt  M )
)  x.  ( ( A  /L k ) ^ ( k 
pCnt  N ) ) ) )
7776adantl 277 . . . . . . . 8  |-  ( ( ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0 ) )  /\  k  e.  ( ZZ>= ` 
1 ) )  /\  k  e.  Prime )  -> 
( if ( k  e.  Prime ,  ( ( A  /L k ) ^ ( k 
pCnt  M ) ) ,  1 )  x.  if ( k  e.  Prime ,  ( ( A  /L k ) ^
( k  pCnt  N
) ) ,  1 ) )  =  ( ( ( A  /L k ) ^
( k  pCnt  M
) )  x.  (
( A  /L
k ) ^ (
k  pCnt  N )
) ) )
7871, 73, 773eqtr4rd 2221 . . . . . . 7  |-  ( ( ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0 ) )  /\  k  e.  ( ZZ>= ` 
1 ) )  /\  k  e.  Prime )  -> 
( if ( k  e.  Prime ,  ( ( A  /L k ) ^ ( k 
pCnt  M ) ) ,  1 )  x.  if ( k  e.  Prime ,  ( ( A  /L k ) ^
( k  pCnt  N
) ) ,  1 ) )  =  if ( k  e.  Prime ,  ( ( A  /L k ) ^
( k  pCnt  ( M  x.  N )
) ) ,  1 ) )
79 1t1e1 9060 . . . . . . . . 9  |-  ( 1  x.  1 )  =  1
80 iffalse 3542 . . . . . . . . . 10  |-  ( -.  k  e.  Prime  ->  if ( k  e.  Prime ,  ( ( A  /L k ) ^
( k  pCnt  M
) ) ,  1 )  =  1 )
81 iffalse 3542 . . . . . . . . . 10  |-  ( -.  k  e.  Prime  ->  if ( k  e.  Prime ,  ( ( A  /L k ) ^
( k  pCnt  N
) ) ,  1 )  =  1 )
8280, 81oveq12d 5887 . . . . . . . . 9  |-  ( -.  k  e.  Prime  ->  ( if ( k  e. 
Prime ,  ( ( A  /L k ) ^ ( k  pCnt  M ) ) ,  1 )  x.  if ( k  e.  Prime ,  ( ( A  /L
k ) ^ (
k  pCnt  N )
) ,  1 ) )  =  ( 1  x.  1 ) )
83 iffalse 3542 . . . . . . . . 9  |-  ( -.  k  e.  Prime  ->  if ( k  e.  Prime ,  ( ( A  /L k ) ^
( k  pCnt  ( M  x.  N )
) ) ,  1 )  =  1 )
8479, 82, 833eqtr4a 2236 . . . . . . . 8  |-  ( -.  k  e.  Prime  ->  ( if ( k  e. 
Prime ,  ( ( A  /L k ) ^ ( k  pCnt  M ) ) ,  1 )  x.  if ( k  e.  Prime ,  ( ( A  /L
k ) ^ (
k  pCnt  N )
) ,  1 ) )  =  if ( k  e.  Prime ,  ( ( A  /L
k ) ^ (
k  pCnt  ( M  x.  N ) ) ) ,  1 ) )
8584adantl 277 . . . . . . 7  |-  ( ( ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0 ) )  /\  k  e.  ( ZZ>= ` 
1 ) )  /\  -.  k  e.  Prime )  ->  ( if ( k  e.  Prime ,  ( ( A  /L
k ) ^ (
k  pCnt  M )
) ,  1 )  x.  if ( k  e.  Prime ,  ( ( A  /L k ) ^ ( k 
pCnt  N ) ) ,  1 ) )  =  if ( k  e. 
Prime ,  ( ( A  /L k ) ^ ( k  pCnt  ( M  x.  N ) ) ) ,  1 ) )
86 prmdc 12113 . . . . . . . . . 10  |-  ( k  e.  NN  -> DECID  k  e.  Prime )
87 exmiddc 836 . . . . . . . . . 10  |-  (DECID  k  e. 
Prime  ->  ( k  e. 
Prime  \/  -.  k  e. 
Prime ) )
8886, 87syl 14 . . . . . . . . 9  |-  ( k  e.  NN  ->  (
k  e.  Prime  \/  -.  k  e.  Prime ) )
8942, 88syl 14 . . . . . . . 8  |-  ( k  e.  ( ZZ>= `  1
)  ->  ( k  e.  Prime  \/  -.  k  e.  Prime ) )
9089adantl 277 . . . . . . 7  |-  ( ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0 ) )  /\  k  e.  ( ZZ>= ` 
1 ) )  -> 
( k  e.  Prime  \/ 
-.  k  e.  Prime ) )
9178, 85, 90mpjaodan 798 . . . . . 6  |-  ( ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0 ) )  /\  k  e.  ( ZZ>= ` 
1 ) )  -> 
( if ( k  e.  Prime ,  ( ( A  /L k ) ^ ( k 
pCnt  M ) ) ,  1 )  x.  if ( k  e.  Prime ,  ( ( A  /L k ) ^
( k  pCnt  N
) ) ,  1 ) )  =  if ( k  e.  Prime ,  ( ( A  /L k ) ^
( k  pCnt  ( M  x.  N )
) ) ,  1 ) )
92 eleq1w 2238 . . . . . . . . 9  |-  ( n  =  k  ->  (
n  e.  Prime  <->  k  e.  Prime ) )
93 oveq2 5877 . . . . . . . . . 10  |-  ( n  =  k  ->  ( A  /L n )  =  ( A  /L k ) )
94 oveq1 5876 . . . . . . . . . 10  |-  ( n  =  k  ->  (
n  pCnt  M )  =  ( k  pCnt  M ) )
9593, 94oveq12d 5887 . . . . . . . . 9  |-  ( n  =  k  ->  (
( A  /L
n ) ^ (
n  pCnt  M )
)  =  ( ( A  /L k ) ^ ( k 
pCnt  M ) ) )
9692, 95ifbieq1d 3556 . . . . . . . 8  |-  ( n  =  k  ->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  M
) ) ,  1 )  =  if ( k  e.  Prime ,  ( ( A  /L
k ) ^ (
k  pCnt  M )
) ,  1 ) )
9742adantl 277 . . . . . . . 8  |-  ( ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0 ) )  /\  k  e.  ( ZZ>= ` 
1 ) )  -> 
k  e.  NN )
98 zexpcl 10521 . . . . . . . . . 10  |-  ( ( ( A  /L
k )  e.  ZZ  /\  ( k  pCnt  M
)  e.  NN0 )  ->  ( ( A  /L k ) ^
( k  pCnt  M
) )  e.  ZZ )
9964, 69, 98syl2anc 411 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0 ) )  /\  k  e.  ( ZZ>= ` 
1 ) )  /\  k  e.  Prime )  -> 
( ( A  /L k ) ^
( k  pCnt  M
) )  e.  ZZ )
100 1zzd 9269 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0 ) )  /\  k  e.  ( ZZ>= ` 
1 ) )  /\  -.  k  e.  Prime )  ->  1  e.  ZZ )
10197, 86syl 14 . . . . . . . . 9  |-  ( ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0 ) )  /\  k  e.  ( ZZ>= ` 
1 ) )  -> DECID  k  e.  Prime )
10299, 100, 101ifcldadc 3563 . . . . . . . 8  |-  ( ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0 ) )  /\  k  e.  ( ZZ>= ` 
1 ) )  ->  if ( k  e.  Prime ,  ( ( A  /L k ) ^
( k  pCnt  M
) ) ,  1 )  e.  ZZ )
10338, 96, 97, 102fvmptd3 5605 . . . . . . 7  |-  ( ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0 ) )  /\  k  e.  ( ZZ>= ` 
1 ) )  -> 
( ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^ ( n 
pCnt  M ) ) ,  1 ) ) `  k )  =  if ( k  e.  Prime ,  ( ( A  /L k ) ^
( k  pCnt  M
) ) ,  1 ) )
104 oveq1 5876 . . . . . . . . . 10  |-  ( n  =  k  ->  (
n  pCnt  N )  =  ( k  pCnt  N ) )
10593, 104oveq12d 5887 . . . . . . . . 9  |-  ( n  =  k  ->  (
( A  /L
n ) ^ (
n  pCnt  N )
)  =  ( ( A  /L k ) ^ ( k 
pCnt  N ) ) )
10692, 105ifbieq1d 3556 . . . . . . . 8  |-  ( n  =  k  ->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  N
) ) ,  1 )  =  if ( k  e.  Prime ,  ( ( A  /L
k ) ^ (
k  pCnt  N )
) ,  1 ) )
107 zexpcl 10521 . . . . . . . . . 10  |-  ( ( ( A  /L
k )  e.  ZZ  /\  ( k  pCnt  N
)  e.  NN0 )  ->  ( ( A  /L k ) ^
( k  pCnt  N
) )  e.  ZZ )
10864, 67, 107syl2anc 411 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0 ) )  /\  k  e.  ( ZZ>= ` 
1 ) )  /\  k  e.  Prime )  -> 
( ( A  /L k ) ^
( k  pCnt  N
) )  e.  ZZ )
109108, 100, 101ifcldadc 3563 . . . . . . . 8  |-  ( ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0 ) )  /\  k  e.  ( ZZ>= ` 
1 ) )  ->  if ( k  e.  Prime ,  ( ( A  /L k ) ^
( k  pCnt  N
) ) ,  1 )  e.  ZZ )
11046, 106, 97, 109fvmptd3 5605 . . . . . . 7  |-  ( ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0 ) )  /\  k  e.  ( ZZ>= ` 
1 ) )  -> 
( ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^ ( n 
pCnt  N ) ) ,  1 ) ) `  k )  =  if ( k  e.  Prime ,  ( ( A  /L k ) ^
( k  pCnt  N
) ) ,  1 ) )
111103, 110oveq12d 5887 . . . . . 6  |-  ( ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0 ) )  /\  k  e.  ( ZZ>= ` 
1 ) )  -> 
( ( ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L
n ) ^ (
n  pCnt  M )
) ,  1 ) ) `  k )  x.  ( ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L
n ) ^ (
n  pCnt  N )
) ,  1 ) ) `  k ) )  =  ( if ( k  e.  Prime ,  ( ( A  /L k ) ^
( k  pCnt  M
) ) ,  1 )  x.  if ( k  e.  Prime ,  ( ( A  /L
k ) ^ (
k  pCnt  N )
) ,  1 ) ) )
112 eqid 2177 . . . . . . 7  |-  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L
n ) ^ (
n  pCnt  ( M  x.  N ) ) ) ,  1 ) )  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^ ( n 
pCnt  ( M  x.  N ) ) ) ,  1 ) )
113 oveq1 5876 . . . . . . . . 9  |-  ( n  =  k  ->  (
n  pCnt  ( M  x.  N ) )  =  ( k  pCnt  ( M  x.  N )
) )
11493, 113oveq12d 5887 . . . . . . . 8  |-  ( n  =  k  ->  (
( A  /L
n ) ^ (
n  pCnt  ( M  x.  N ) ) )  =  ( ( A  /L k ) ^ ( k  pCnt  ( M  x.  N ) ) ) )
11592, 114ifbieq1d 3556 . . . . . . 7  |-  ( n  =  k  ->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  ( M  x.  N )
) ) ,  1 )  =  if ( k  e.  Prime ,  ( ( A  /L
k ) ^ (
k  pCnt  ( M  x.  N ) ) ) ,  1 ) )
11617ad2antrr 488 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0 ) )  /\  k  e.  ( ZZ>= ` 
1 ) )  /\  k  e.  Prime )  -> 
( M  x.  N
)  e.  ZZ )
11732ad2antrr 488 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0 ) )  /\  k  e.  ( ZZ>= ` 
1 ) )  /\  k  e.  Prime )  -> 
( M  x.  N
)  =/=  0 )
118 pczcl 12281 . . . . . . . . . 10  |-  ( ( k  e.  Prime  /\  (
( M  x.  N
)  e.  ZZ  /\  ( M  x.  N
)  =/=  0 ) )  ->  ( k  pCnt  ( M  x.  N
) )  e.  NN0 )
11952, 116, 117, 118syl12anc 1236 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0 ) )  /\  k  e.  ( ZZ>= ` 
1 ) )  /\  k  e.  Prime )  -> 
( k  pCnt  ( M  x.  N )
)  e.  NN0 )
120 zexpcl 10521 . . . . . . . . 9  |-  ( ( ( A  /L
k )  e.  ZZ  /\  ( k  pCnt  ( M  x.  N )
)  e.  NN0 )  ->  ( ( A  /L k ) ^
( k  pCnt  ( M  x.  N )
) )  e.  ZZ )
12164, 119, 120syl2anc 411 . . . . . . . 8  |-  ( ( ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0 ) )  /\  k  e.  ( ZZ>= ` 
1 ) )  /\  k  e.  Prime )  -> 
( ( A  /L k ) ^
( k  pCnt  ( M  x.  N )
) )  e.  ZZ )
122121, 100, 101ifcldadc 3563 . . . . . . 7  |-  ( ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0 ) )  /\  k  e.  ( ZZ>= ` 
1 ) )  ->  if ( k  e.  Prime ,  ( ( A  /L k ) ^
( k  pCnt  ( M  x.  N )
) ) ,  1 )  e.  ZZ )
123112, 115, 97, 122fvmptd3 5605 . . . . . 6  |-  ( ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0 ) )  /\  k  e.  ( ZZ>= ` 
1 ) )  -> 
( ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^ ( n 
pCnt  ( M  x.  N ) ) ) ,  1 ) ) `
 k )  =  if ( k  e. 
Prime ,  ( ( A  /L k ) ^ ( k  pCnt  ( M  x.  N ) ) ) ,  1 ) )
12491, 111, 1233eqtr4rd 2221 . . . . 5  |-  ( ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0 ) )  /\  k  e.  ( ZZ>= ` 
1 ) )  -> 
( ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^ ( n 
pCnt  ( M  x.  N ) ) ) ,  1 ) ) `
 k )  =  ( ( ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L
n ) ^ (
n  pCnt  M )
) ,  1 ) ) `  k )  x.  ( ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L
n ) ^ (
n  pCnt  N )
) ,  1 ) ) `  k ) ) )
12536, 45, 51, 124prod3fmul 11533 . . . 4  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  ->  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  ( M  x.  N )
) ) ,  1 ) ) ) `  ( abs `  ( M  x.  N ) ) )  =  ( (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^ ( n 
pCnt  M ) ) ,  1 ) ) ) `
 ( abs `  ( M  x.  N )
) )  x.  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) ) `  ( abs `  ( M  x.  N ) ) ) ) )
12637, 15, 16, 20, 25, 38lgsdilem2 14104 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  ->  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  M
) ) ,  1 ) ) ) `  ( abs `  M ) )  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  M
) ) ,  1 ) ) ) `  ( abs `  ( M  x.  N ) ) ) )
12737, 16, 15, 25, 20, 46lgsdilem2 14104 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  ->  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) ) `  ( abs `  N ) )  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) ) `  ( abs `  ( N  x.  M ) ) ) )
12818, 19mulcomd 7969 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  ->  ( M  x.  N )  =  ( N  x.  M ) )
129128fveq2d 5515 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  ->  ( abs `  ( M  x.  N ) )  =  ( abs `  ( N  x.  M )
) )
130129fveq2d 5515 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  ->  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) ) `  ( abs `  ( M  x.  N ) ) )  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) ) `  ( abs `  ( N  x.  M ) ) ) )
131127, 130eqtr4d 2213 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  ->  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) ) `  ( abs `  N ) )  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) ) `  ( abs `  ( M  x.  N ) ) ) )
132126, 131oveq12d 5887 . . . 4  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  ->  (
(  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^ ( n 
pCnt  M ) ) ,  1 ) ) ) `
 ( abs `  M
) )  x.  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) ) `  ( abs `  N ) ) )  =  ( (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L
n ) ^ (
n  pCnt  M )
) ,  1 ) ) ) `  ( abs `  ( M  x.  N ) ) )  x.  (  seq 1
(  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) ) `  ( abs `  ( M  x.  N ) ) ) ) )
133125, 132eqtr4d 2213 . . 3  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  ->  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  ( M  x.  N )
) ) ,  1 ) ) ) `  ( abs `  ( M  x.  N ) ) )  =  ( (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^ ( n 
pCnt  M ) ) ,  1 ) ) ) `
 ( abs `  M
) )  x.  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) ) `  ( abs `  N ) ) ) )
13414, 133oveq12d 5887 . 2  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  ->  ( if ( ( ( M  x.  N )  <  0  /\  A  <  0 ) ,  -u
1 ,  1 )  x.  (  seq 1
(  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  ( M  x.  N )
) ) ,  1 ) ) ) `  ( abs `  ( M  x.  N ) ) ) )  =  ( ( if ( ( M  <  0  /\  A  <  0 ) ,  -u 1 ,  1 )  x.  if ( ( N  <  0  /\  A  <  0
) ,  -u 1 ,  1 ) )  x.  ( (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  M
) ) ,  1 ) ) ) `  ( abs `  M ) )  x.  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) ) `  ( abs `  N ) ) ) ) )
135112lgsval4 14088 . . 3  |-  ( ( A  e.  ZZ  /\  ( M  x.  N
)  e.  ZZ  /\  ( M  x.  N
)  =/=  0 )  ->  ( A  /L ( M  x.  N ) )  =  ( if ( ( ( M  x.  N
)  <  0  /\  A  <  0 ) , 
-u 1 ,  1 )  x.  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  ( M  x.  N )
) ) ,  1 ) ) ) `  ( abs `  ( M  x.  N ) ) ) ) )
13637, 17, 32, 135syl3anc 1238 . 2  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  ->  ( A  /L ( M  x.  N ) )  =  ( if ( ( ( M  x.  N )  <  0  /\  A  <  0
) ,  -u 1 ,  1 )  x.  (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L
n ) ^ (
n  pCnt  ( M  x.  N ) ) ) ,  1 ) ) ) `  ( abs `  ( M  x.  N
) ) ) ) )
13738lgsval4 14088 . . . . 5  |-  ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  M  =/=  0 )  ->  ( A  /L M )  =  ( if ( ( M  <  0  /\  A  <  0
) ,  -u 1 ,  1 )  x.  (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L
n ) ^ (
n  pCnt  M )
) ,  1 ) ) ) `  ( abs `  M ) ) ) )
13837, 15, 20, 137syl3anc 1238 . . . 4  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  ->  ( A  /L M )  =  ( if ( ( M  <  0  /\  A  <  0
) ,  -u 1 ,  1 )  x.  (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L
n ) ^ (
n  pCnt  M )
) ,  1 ) ) ) `  ( abs `  M ) ) ) )
13946lgsval4 14088 . . . . 5  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  ( A  /L N )  =  ( if ( ( N  <  0  /\  A  <  0
) ,  -u 1 ,  1 )  x.  (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L
n ) ^ (
n  pCnt  N )
) ,  1 ) ) ) `  ( abs `  N ) ) ) )
14037, 16, 25, 139syl3anc 1238 . . . 4  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  ->  ( A  /L N )  =  ( if ( ( N  <  0  /\  A  <  0
) ,  -u 1 ,  1 )  x.  (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L
n ) ^ (
n  pCnt  N )
) ,  1 ) ) ) `  ( abs `  N ) ) ) )
141138, 140oveq12d 5887 . . 3  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  ->  (
( A  /L
M )  x.  ( A  /L N ) )  =  ( ( if ( ( M  <  0  /\  A  <  0 ) ,  -u
1 ,  1 )  x.  (  seq 1
(  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  M
) ) ,  1 ) ) ) `  ( abs `  M ) ) )  x.  ( if ( ( N  <  0  /\  A  <  0 ) ,  -u
1 ,  1 )  x.  (  seq 1
(  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) ) `  ( abs `  N ) ) ) ) )
142 neg1z 9274 . . . . . . 7  |-  -u 1  e.  ZZ
143142a1i 9 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  ->  -u 1  e.  ZZ )
144 1zzd 9269 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  ->  1  e.  ZZ )
145 zdclt 9319 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  0  e.  ZZ )  -> DECID  M  <  0 )
14615, 21, 145sylancl 413 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  -> DECID  M  <  0
)
147 zdclt 9319 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  0  e.  ZZ )  -> DECID  A  <  0 )
14837, 21, 147sylancl 413 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  -> DECID  A  <  0
)
149 dcan2 934 . . . . . . 7  |-  (DECID  M  <  0  ->  (DECID  A  <  0  -> DECID 
( M  <  0  /\  A  <  0
) ) )
150146, 148, 149sylc 62 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  -> DECID  ( M  <  0  /\  A  <  0
) )
151143, 144, 150ifcldcd 3569 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  ->  if ( ( M  <  0  /\  A  <  0 ) ,  -u
1 ,  1 )  e.  ZZ )
152151zcnd 9365 . . . 4  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  ->  if ( ( M  <  0  /\  A  <  0 ) ,  -u
1 ,  1 )  e.  CC )
15340ffvelcdmda 5647 . . . . . . 7  |-  ( ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0 ) )  /\  k  e.  NN )  ->  ( ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^ ( n 
pCnt  M ) ) ,  1 ) ) `  k )  e.  ZZ )
154 zmulcl 9295 . . . . . . . 8  |-  ( ( k  e.  ZZ  /\  v  e.  ZZ )  ->  ( k  x.  v
)  e.  ZZ )
155154adantl 277 . . . . . . 7  |-  ( ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0 ) )  /\  ( k  e.  ZZ  /\  v  e.  ZZ ) )  ->  ( k  x.  v )  e.  ZZ )
15635, 144, 153, 155seqf 10447 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  ->  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  M
) ) ,  1 ) ) ) : NN --> ZZ )
157 nnabscl 11093 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  M  =/=  0 )  -> 
( abs `  M
)  e.  NN )
15815, 20, 157syl2anc 411 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  ->  ( abs `  M )  e.  NN )
159156, 158ffvelcdmd 5648 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  ->  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  M
) ) ,  1 ) ) ) `  ( abs `  M ) )  e.  ZZ )
160159zcnd 9365 . . . 4  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  ->  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  M
) ) ,  1 ) ) ) `  ( abs `  M ) )  e.  CC )
161 zdclt 9319 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  0  e.  ZZ )  -> DECID  N  <  0 )
16216, 21, 161sylancl 413 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  -> DECID  N  <  0
)
163 dcan2 934 . . . . . . 7  |-  (DECID  N  <  0  ->  (DECID  A  <  0  -> DECID 
( N  <  0  /\  A  <  0
) ) )
164162, 148, 163sylc 62 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  -> DECID  ( N  <  0  /\  A  <  0
) )
165143, 144, 164ifcldcd 3569 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  ->  if ( ( N  <  0  /\  A  <  0 ) ,  -u
1 ,  1 )  e.  ZZ )
166165zcnd 9365 . . . 4  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  ->  if ( ( N  <  0  /\  A  <  0 ) ,  -u
1 ,  1 )  e.  CC )
16748ffvelcdmda 5647 . . . . . . 7  |-  ( ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0 ) )  /\  k  e.  NN )  ->  ( ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^ ( n 
pCnt  N ) ) ,  1 ) ) `  k )  e.  ZZ )
16835, 144, 167, 155seqf 10447 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  ->  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) ) : NN --> ZZ )
169 nnabscl 11093 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  N  =/=  0 )  -> 
( abs `  N
)  e.  NN )
17016, 25, 169syl2anc 411 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  ->  ( abs `  N )  e.  NN )
171168, 170ffvelcdmd 5648 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  ->  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) ) `  ( abs `  N ) )  e.  ZZ )
172171zcnd 9365 . . . 4  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  ->  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) ) `  ( abs `  N ) )  e.  CC )
173152, 160, 166, 172mul4d 8102 . . 3  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  ->  (
( if ( ( M  <  0  /\  A  <  0 ) ,  -u 1 ,  1 )  x.  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  M
) ) ,  1 ) ) ) `  ( abs `  M ) ) )  x.  ( if ( ( N  <  0  /\  A  <  0 ) ,  -u
1 ,  1 )  x.  (  seq 1
(  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) ) `  ( abs `  N ) ) ) )  =  ( ( if ( ( M  <  0  /\  A  <  0
) ,  -u 1 ,  1 )  x.  if ( ( N  <  0  /\  A  <  0 ) ,  -u
1 ,  1 ) )  x.  ( (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^ ( n 
pCnt  M ) ) ,  1 ) ) ) `
 ( abs `  M
) )  x.  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) ) `  ( abs `  N ) ) ) ) )
174141, 173eqtrd 2210 . 2  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  ->  (
( A  /L
M )  x.  ( A  /L N ) )  =  ( ( if ( ( M  <  0  /\  A  <  0 ) ,  -u
1 ,  1 )  x.  if ( ( N  <  0  /\  A  <  0 ) ,  -u 1 ,  1 ) )  x.  (
(  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^ ( n 
pCnt  M ) ) ,  1 ) ) ) `
 ( abs `  M
) )  x.  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) ) `  ( abs `  N ) ) ) ) )
175134, 136, 1743eqtr4d 2220 1  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  ->  ( A  /L ( M  x.  N ) )  =  ( ( A  /L M )  x.  ( A  /L N ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 708  DECID wdc 834    /\ w3a 978    = wceq 1353    e. wcel 2148    =/= wne 2347   ifcif 3534   class class class wbr 4000    |-> cmpt 4061   -->wf 5208   ` cfv 5212  (class class class)co 5869   0cc0 7802   1c1 7803    + caddc 7805    x. cmul 7807    < clt 7982   -ucneg 8119   # cap 8528   NNcn 8908   NN0cn0 9165   ZZcz 9242   ZZ>=cuz 9517    seqcseq 10431   ^cexp 10505   abscabs 10990   Primecprime 12090    pCnt cpc 12267    /Lclgs 14065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-mulrcl 7901  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-precex 7912  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918  ax-pre-mulgt0 7919  ax-pre-mulext 7920  ax-arch 7921  ax-caucvg 7922
This theorem depends on definitions:  df-bi 117  df-stab 831  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-xor 1376  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-po 4293  df-iso 4294  df-iord 4363  df-on 4365  df-ilim 4366  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-isom 5221  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-irdg 6365  df-frec 6386  df-1o 6411  df-2o 6412  df-oadd 6415  df-er 6529  df-en 6735  df-dom 6736  df-fin 6737  df-sup 6977  df-inf 6978  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-reap 8522  df-ap 8529  df-div 8619  df-inn 8909  df-2 8967  df-3 8968  df-4 8969  df-5 8970  df-6 8971  df-7 8972  df-8 8973  df-n0 9166  df-z 9243  df-uz 9518  df-q 9609  df-rp 9641  df-fz 9996  df-fzo 10129  df-fl 10256  df-mod 10309  df-seqfrec 10432  df-exp 10506  df-ihash 10740  df-cj 10835  df-re 10836  df-im 10837  df-rsqrt 10991  df-abs 10992  df-clim 11271  df-proddc 11543  df-dvds 11779  df-gcd 11927  df-prm 12091  df-phi 12194  df-pc 12268  df-lgs 14066
This theorem is referenced by:  lgssq2  14109  lgsdinn0  14116
  Copyright terms: Public domain W3C validator