| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lgsdi | Unicode version | ||
| Description: The Legendre symbol is
completely multiplicative in its right
argument. Generalization of theorem 9.9(b) in [ApostolNT] p. 188
(which assumes that |
| Ref | Expression |
|---|---|
| lgsdi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3anrot 1007 |
. . . . 5
| |
| 2 | lgsdilem 15706 |
. . . . 5
| |
| 3 | 1, 2 | sylanb 284 |
. . . 4
|
| 4 | ancom 266 |
. . . . 5
| |
| 5 | ifbi 3623 |
. . . . 5
| |
| 6 | 4, 5 | ax-mp 5 |
. . . 4
|
| 7 | ancom 266 |
. . . . . 6
| |
| 8 | ifbi 3623 |
. . . . . 6
| |
| 9 | 7, 8 | ax-mp 5 |
. . . . 5
|
| 10 | ancom 266 |
. . . . . 6
| |
| 11 | ifbi 3623 |
. . . . . 6
| |
| 12 | 10, 11 | ax-mp 5 |
. . . . 5
|
| 13 | 9, 12 | oveq12i 6013 |
. . . 4
|
| 14 | 3, 6, 13 | 3eqtr4g 2287 |
. . 3
|
| 15 | simpl2 1025 |
. . . . . . . 8
| |
| 16 | simpl3 1026 |
. . . . . . . 8
| |
| 17 | 15, 16 | zmulcld 9575 |
. . . . . . 7
|
| 18 | 15 | zcnd 9570 |
. . . . . . . . 9
|
| 19 | 16 | zcnd 9570 |
. . . . . . . . 9
|
| 20 | simprl 529 |
. . . . . . . . . 10
| |
| 21 | 0z 9457 |
. . . . . . . . . . 11
| |
| 22 | zapne 9521 |
. . . . . . . . . . 11
| |
| 23 | 15, 21, 22 | sylancl 413 |
. . . . . . . . . 10
|
| 24 | 20, 23 | mpbird 167 |
. . . . . . . . 9
|
| 25 | simprr 531 |
. . . . . . . . . 10
| |
| 26 | zapne 9521 |
. . . . . . . . . . 11
| |
| 27 | 16, 21, 26 | sylancl 413 |
. . . . . . . . . 10
|
| 28 | 25, 27 | mpbird 167 |
. . . . . . . . 9
|
| 29 | 18, 19, 24, 28 | mulap0d 8805 |
. . . . . . . 8
|
| 30 | zapne 9521 |
. . . . . . . . 9
| |
| 31 | 17, 21, 30 | sylancl 413 |
. . . . . . . 8
|
| 32 | 29, 31 | mpbid 147 |
. . . . . . 7
|
| 33 | nnabscl 11611 |
. . . . . . 7
| |
| 34 | 17, 32, 33 | syl2anc 411 |
. . . . . 6
|
| 35 | nnuz 9758 |
. . . . . 6
| |
| 36 | 34, 35 | eleqtrdi 2322 |
. . . . 5
|
| 37 | simpl1 1024 |
. . . . . . . 8
| |
| 38 | eqid 2229 |
. . . . . . . . 9
| |
| 39 | 38 | lgsfcl3 15700 |
. . . . . . . 8
|
| 40 | 37, 15, 20, 39 | syl3anc 1271 |
. . . . . . 7
|
| 41 | elnnuz 9759 |
. . . . . . . 8
| |
| 42 | 41 | biimpri 133 |
. . . . . . 7
|
| 43 | ffvelcdm 5768 |
. . . . . . 7
| |
| 44 | 40, 42, 43 | syl2an 289 |
. . . . . 6
|
| 45 | 44 | zcnd 9570 |
. . . . 5
|
| 46 | eqid 2229 |
. . . . . . . . 9
| |
| 47 | 46 | lgsfcl3 15700 |
. . . . . . . 8
|
| 48 | 37, 16, 25, 47 | syl3anc 1271 |
. . . . . . 7
|
| 49 | ffvelcdm 5768 |
. . . . . . 7
| |
| 50 | 48, 42, 49 | syl2an 289 |
. . . . . 6
|
| 51 | 50 | zcnd 9570 |
. . . . 5
|
| 52 | simpr 110 |
. . . . . . . . . . 11
| |
| 53 | 15 | ad2antrr 488 |
. . . . . . . . . . 11
|
| 54 | 20 | ad2antrr 488 |
. . . . . . . . . . 11
|
| 55 | 16 | ad2antrr 488 |
. . . . . . . . . . 11
|
| 56 | 25 | ad2antrr 488 |
. . . . . . . . . . 11
|
| 57 | pcmul 12824 |
. . . . . . . . . . 11
| |
| 58 | 52, 53, 54, 55, 56, 57 | syl122anc 1280 |
. . . . . . . . . 10
|
| 59 | 58 | oveq2d 6017 |
. . . . . . . . 9
|
| 60 | 37 | ad2antrr 488 |
. . . . . . . . . . . 12
|
| 61 | prmz 12633 |
. . . . . . . . . . . . 13
| |
| 62 | 61 | adantl 277 |
. . . . . . . . . . . 12
|
| 63 | lgscl 15693 |
. . . . . . . . . . . 12
| |
| 64 | 60, 62, 63 | syl2anc 411 |
. . . . . . . . . . 11
|
| 65 | 64 | zcnd 9570 |
. . . . . . . . . 10
|
| 66 | pczcl 12821 |
. . . . . . . . . . 11
| |
| 67 | 52, 55, 56, 66 | syl12anc 1269 |
. . . . . . . . . 10
|
| 68 | pczcl 12821 |
. . . . . . . . . . 11
| |
| 69 | 52, 53, 54, 68 | syl12anc 1269 |
. . . . . . . . . 10
|
| 70 | 65, 67, 69 | expaddd 10897 |
. . . . . . . . 9
|
| 71 | 59, 70 | eqtrd 2262 |
. . . . . . . 8
|
| 72 | iftrue 3607 |
. . . . . . . . 9
| |
| 73 | 72 | adantl 277 |
. . . . . . . 8
|
| 74 | iftrue 3607 |
. . . . . . . . . 10
| |
| 75 | iftrue 3607 |
. . . . . . . . . 10
| |
| 76 | 74, 75 | oveq12d 6019 |
. . . . . . . . 9
|
| 77 | 76 | adantl 277 |
. . . . . . . 8
|
| 78 | 71, 73, 77 | 3eqtr4rd 2273 |
. . . . . . 7
|
| 79 | 1t1e1 9263 |
. . . . . . . . 9
| |
| 80 | iffalse 3610 |
. . . . . . . . . 10
| |
| 81 | iffalse 3610 |
. . . . . . . . . 10
| |
| 82 | 80, 81 | oveq12d 6019 |
. . . . . . . . 9
|
| 83 | iffalse 3610 |
. . . . . . . . 9
| |
| 84 | 79, 82, 83 | 3eqtr4a 2288 |
. . . . . . . 8
|
| 85 | 84 | adantl 277 |
. . . . . . 7
|
| 86 | prmdc 12652 |
. . . . . . . . . 10
| |
| 87 | exmiddc 841 |
. . . . . . . . . 10
| |
| 88 | 86, 87 | syl 14 |
. . . . . . . . 9
|
| 89 | 42, 88 | syl 14 |
. . . . . . . 8
|
| 90 | 89 | adantl 277 |
. . . . . . 7
|
| 91 | 78, 85, 90 | mpjaodan 803 |
. . . . . 6
|
| 92 | eleq1w 2290 |
. . . . . . . . 9
| |
| 93 | oveq2 6009 |
. . . . . . . . . 10
| |
| 94 | oveq1 6008 |
. . . . . . . . . 10
| |
| 95 | 93, 94 | oveq12d 6019 |
. . . . . . . . 9
|
| 96 | 92, 95 | ifbieq1d 3625 |
. . . . . . . 8
|
| 97 | 42 | adantl 277 |
. . . . . . . 8
|
| 98 | zexpcl 10776 |
. . . . . . . . . 10
| |
| 99 | 64, 69, 98 | syl2anc 411 |
. . . . . . . . 9
|
| 100 | 1zzd 9473 |
. . . . . . . . 9
| |
| 101 | 97, 86 | syl 14 |
. . . . . . . . 9
|
| 102 | 99, 100, 101 | ifcldadc 3632 |
. . . . . . . 8
|
| 103 | 38, 96, 97, 102 | fvmptd3 5728 |
. . . . . . 7
|
| 104 | oveq1 6008 |
. . . . . . . . . 10
| |
| 105 | 93, 104 | oveq12d 6019 |
. . . . . . . . 9
|
| 106 | 92, 105 | ifbieq1d 3625 |
. . . . . . . 8
|
| 107 | zexpcl 10776 |
. . . . . . . . . 10
| |
| 108 | 64, 67, 107 | syl2anc 411 |
. . . . . . . . 9
|
| 109 | 108, 100, 101 | ifcldadc 3632 |
. . . . . . . 8
|
| 110 | 46, 106, 97, 109 | fvmptd3 5728 |
. . . . . . 7
|
| 111 | 103, 110 | oveq12d 6019 |
. . . . . 6
|
| 112 | eqid 2229 |
. . . . . . 7
| |
| 113 | oveq1 6008 |
. . . . . . . . 9
| |
| 114 | 93, 113 | oveq12d 6019 |
. . . . . . . 8
|
| 115 | 92, 114 | ifbieq1d 3625 |
. . . . . . 7
|
| 116 | 17 | ad2antrr 488 |
. . . . . . . . . 10
|
| 117 | 32 | ad2antrr 488 |
. . . . . . . . . 10
|
| 118 | pczcl 12821 |
. . . . . . . . . 10
| |
| 119 | 52, 116, 117, 118 | syl12anc 1269 |
. . . . . . . . 9
|
| 120 | zexpcl 10776 |
. . . . . . . . 9
| |
| 121 | 64, 119, 120 | syl2anc 411 |
. . . . . . . 8
|
| 122 | 121, 100, 101 | ifcldadc 3632 |
. . . . . . 7
|
| 123 | 112, 115, 97, 122 | fvmptd3 5728 |
. . . . . 6
|
| 124 | 91, 111, 123 | 3eqtr4rd 2273 |
. . . . 5
|
| 125 | 36, 45, 51, 124 | prod3fmul 12052 |
. . . 4
|
| 126 | 37, 15, 16, 20, 25, 38 | lgsdilem2 15715 |
. . . . 5
|
| 127 | 37, 16, 15, 25, 20, 46 | lgsdilem2 15715 |
. . . . . 6
|
| 128 | 18, 19 | mulcomd 8168 |
. . . . . . . 8
|
| 129 | 128 | fveq2d 5631 |
. . . . . . 7
|
| 130 | 129 | fveq2d 5631 |
. . . . . 6
|
| 131 | 127, 130 | eqtr4d 2265 |
. . . . 5
|
| 132 | 126, 131 | oveq12d 6019 |
. . . 4
|
| 133 | 125, 132 | eqtr4d 2265 |
. . 3
|
| 134 | 14, 133 | oveq12d 6019 |
. 2
|
| 135 | 112 | lgsval4 15699 |
. . 3
|
| 136 | 37, 17, 32, 135 | syl3anc 1271 |
. 2
|
| 137 | 38 | lgsval4 15699 |
. . . . 5
|
| 138 | 37, 15, 20, 137 | syl3anc 1271 |
. . . 4
|
| 139 | 46 | lgsval4 15699 |
. . . . 5
|
| 140 | 37, 16, 25, 139 | syl3anc 1271 |
. . . 4
|
| 141 | 138, 140 | oveq12d 6019 |
. . 3
|
| 142 | neg1z 9478 |
. . . . . . 7
| |
| 143 | 142 | a1i 9 |
. . . . . 6
|
| 144 | 1zzd 9473 |
. . . . . 6
| |
| 145 | zdclt 9524 |
. . . . . . . 8
| |
| 146 | 15, 21, 145 | sylancl 413 |
. . . . . . 7
|
| 147 | zdclt 9524 |
. . . . . . . 8
| |
| 148 | 37, 21, 147 | sylancl 413 |
. . . . . . 7
|
| 149 | dcan2 940 |
. . . . . . 7
| |
| 150 | 146, 148, 149 | sylc 62 |
. . . . . 6
|
| 151 | 143, 144, 150 | ifcldcd 3640 |
. . . . 5
|
| 152 | 151 | zcnd 9570 |
. . . 4
|
| 153 | 40 | ffvelcdmda 5770 |
. . . . . . 7
|
| 154 | zmulcl 9500 |
. . . . . . . 8
| |
| 155 | 154 | adantl 277 |
. . . . . . 7
|
| 156 | 35, 144, 153, 155 | seqf 10686 |
. . . . . 6
|
| 157 | nnabscl 11611 |
. . . . . . 7
| |
| 158 | 15, 20, 157 | syl2anc 411 |
. . . . . 6
|
| 159 | 156, 158 | ffvelcdmd 5771 |
. . . . 5
|
| 160 | 159 | zcnd 9570 |
. . . 4
|
| 161 | zdclt 9524 |
. . . . . . . 8
| |
| 162 | 16, 21, 161 | sylancl 413 |
. . . . . . 7
|
| 163 | dcan2 940 |
. . . . . . 7
| |
| 164 | 162, 148, 163 | sylc 62 |
. . . . . 6
|
| 165 | 143, 144, 164 | ifcldcd 3640 |
. . . . 5
|
| 166 | 165 | zcnd 9570 |
. . . 4
|
| 167 | 48 | ffvelcdmda 5770 |
. . . . . . 7
|
| 168 | 35, 144, 167, 155 | seqf 10686 |
. . . . . 6
|
| 169 | nnabscl 11611 |
. . . . . . 7
| |
| 170 | 16, 25, 169 | syl2anc 411 |
. . . . . 6
|
| 171 | 168, 170 | ffvelcdmd 5771 |
. . . . 5
|
| 172 | 171 | zcnd 9570 |
. . . 4
|
| 173 | 152, 160, 166, 172 | mul4d 8301 |
. . 3
|
| 174 | 141, 173 | eqtrd 2262 |
. 2
|
| 175 | 134, 136, 174 | 3eqtr4d 2272 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 ax-cnex 8090 ax-resscn 8091 ax-1cn 8092 ax-1re 8093 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-mulrcl 8098 ax-addcom 8099 ax-mulcom 8100 ax-addass 8101 ax-mulass 8102 ax-distr 8103 ax-i2m1 8104 ax-0lt1 8105 ax-1rid 8106 ax-0id 8107 ax-rnegex 8108 ax-precex 8109 ax-cnre 8110 ax-pre-ltirr 8111 ax-pre-ltwlin 8112 ax-pre-lttrn 8113 ax-pre-apti 8114 ax-pre-ltadd 8115 ax-pre-mulgt0 8116 ax-pre-mulext 8117 ax-arch 8118 ax-caucvg 8119 |
| This theorem depends on definitions: df-bi 117 df-stab 836 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-xor 1418 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-po 4387 df-iso 4388 df-iord 4457 df-on 4459 df-ilim 4460 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-isom 5327 df-riota 5954 df-ov 6004 df-oprab 6005 df-mpo 6006 df-1st 6286 df-2nd 6287 df-recs 6451 df-irdg 6516 df-frec 6537 df-1o 6562 df-2o 6563 df-oadd 6566 df-er 6680 df-en 6888 df-dom 6889 df-fin 6890 df-sup 7151 df-inf 7152 df-pnf 8183 df-mnf 8184 df-xr 8185 df-ltxr 8186 df-le 8187 df-sub 8319 df-neg 8320 df-reap 8722 df-ap 8729 df-div 8820 df-inn 9111 df-2 9169 df-3 9170 df-4 9171 df-5 9172 df-6 9173 df-7 9174 df-8 9175 df-n0 9370 df-z 9447 df-uz 9723 df-q 9815 df-rp 9850 df-fz 10205 df-fzo 10339 df-fl 10490 df-mod 10545 df-seqfrec 10670 df-exp 10761 df-ihash 10998 df-cj 11353 df-re 11354 df-im 11355 df-rsqrt 11509 df-abs 11510 df-clim 11790 df-proddc 12062 df-dvds 12299 df-gcd 12475 df-prm 12630 df-phi 12733 df-pc 12808 df-lgs 15677 |
| This theorem is referenced by: lgssq2 15720 lgsdinn0 15727 lgsquad2lem1 15760 |
| Copyright terms: Public domain | W3C validator |