ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lgsdi Unicode version

Theorem lgsdi 13538
Description: The Legendre symbol is completely multiplicative in its right argument. Generalization of theorem 9.9(b) in [ApostolNT] p. 188 (which assumes that  M and  N are odd positive integers). (Contributed by Mario Carneiro, 5-Feb-2015.)
Assertion
Ref Expression
lgsdi  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  ->  ( A  /L ( M  x.  N ) )  =  ( ( A  /L M )  x.  ( A  /L N ) ) )

Proof of Theorem lgsdi
Dummy variables  k  n  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 3anrot 973 . . . . 5  |-  ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  <->  ( M  e.  ZZ  /\  N  e.  ZZ  /\  A  e.  ZZ ) )
2 lgsdilem 13528 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  A  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  ->  if ( ( A  <  0  /\  ( M  x.  N )  <  0 ) ,  -u
1 ,  1 )  =  ( if ( ( A  <  0  /\  M  <  0
) ,  -u 1 ,  1 )  x.  if ( ( A  <  0  /\  N  <  0 ) ,  -u
1 ,  1 ) ) )
31, 2sylanb 282 . . . 4  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  ->  if ( ( A  <  0  /\  ( M  x.  N )  <  0 ) ,  -u
1 ,  1 )  =  ( if ( ( A  <  0  /\  M  <  0
) ,  -u 1 ,  1 )  x.  if ( ( A  <  0  /\  N  <  0 ) ,  -u
1 ,  1 ) ) )
4 ancom 264 . . . . 5  |-  ( ( ( M  x.  N
)  <  0  /\  A  <  0 )  <->  ( A  <  0  /\  ( M  x.  N )  <  0 ) )
5 ifbi 3539 . . . . 5  |-  ( ( ( ( M  x.  N )  <  0  /\  A  <  0
)  <->  ( A  <  0  /\  ( M  x.  N )  <  0 ) )  ->  if ( ( ( M  x.  N )  <  0  /\  A  <  0 ) ,  -u
1 ,  1 )  =  if ( ( A  <  0  /\  ( M  x.  N
)  <  0 ) ,  -u 1 ,  1 ) )
64, 5ax-mp 5 . . . 4  |-  if ( ( ( M  x.  N )  <  0  /\  A  <  0
) ,  -u 1 ,  1 )  =  if ( ( A  <  0  /\  ( M  x.  N )  <  0 ) ,  -u
1 ,  1 )
7 ancom 264 . . . . . 6  |-  ( ( M  <  0  /\  A  <  0 )  <-> 
( A  <  0  /\  M  <  0
) )
8 ifbi 3539 . . . . . 6  |-  ( ( ( M  <  0  /\  A  <  0
)  <->  ( A  <  0  /\  M  <  0 ) )  ->  if ( ( M  <  0  /\  A  <  0 ) ,  -u
1 ,  1 )  =  if ( ( A  <  0  /\  M  <  0 ) ,  -u 1 ,  1 ) )
97, 8ax-mp 5 . . . . 5  |-  if ( ( M  <  0  /\  A  <  0
) ,  -u 1 ,  1 )  =  if ( ( A  <  0  /\  M  <  0 ) ,  -u
1 ,  1 )
10 ancom 264 . . . . . 6  |-  ( ( N  <  0  /\  A  <  0 )  <-> 
( A  <  0  /\  N  <  0
) )
11 ifbi 3539 . . . . . 6  |-  ( ( ( N  <  0  /\  A  <  0
)  <->  ( A  <  0  /\  N  <  0 ) )  ->  if ( ( N  <  0  /\  A  <  0 ) ,  -u
1 ,  1 )  =  if ( ( A  <  0  /\  N  <  0 ) ,  -u 1 ,  1 ) )
1210, 11ax-mp 5 . . . . 5  |-  if ( ( N  <  0  /\  A  <  0
) ,  -u 1 ,  1 )  =  if ( ( A  <  0  /\  N  <  0 ) ,  -u
1 ,  1 )
139, 12oveq12i 5853 . . . 4  |-  ( if ( ( M  <  0  /\  A  <  0 ) ,  -u
1 ,  1 )  x.  if ( ( N  <  0  /\  A  <  0 ) ,  -u 1 ,  1 ) )  =  ( if ( ( A  <  0  /\  M  <  0 ) ,  -u
1 ,  1 )  x.  if ( ( A  <  0  /\  N  <  0 ) ,  -u 1 ,  1 ) )
143, 6, 133eqtr4g 2223 . . 3  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  ->  if ( ( ( M  x.  N )  <  0  /\  A  <  0 ) ,  -u
1 ,  1 )  =  ( if ( ( M  <  0  /\  A  <  0
) ,  -u 1 ,  1 )  x.  if ( ( N  <  0  /\  A  <  0 ) ,  -u
1 ,  1 ) ) )
15 simpl2 991 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  ->  M  e.  ZZ )
16 simpl3 992 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  ->  N  e.  ZZ )
1715, 16zmulcld 9315 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  ->  ( M  x.  N )  e.  ZZ )
1815zcnd 9310 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  ->  M  e.  CC )
1916zcnd 9310 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  ->  N  e.  CC )
20 simprl 521 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  ->  M  =/=  0 )
21 0z 9198 . . . . . . . . . . 11  |-  0  e.  ZZ
22 zapne 9261 . . . . . . . . . . 11  |-  ( ( M  e.  ZZ  /\  0  e.  ZZ )  ->  ( M #  0  <->  M  =/=  0 ) )
2315, 21, 22sylancl 410 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  ->  ( M #  0  <->  M  =/=  0
) )
2420, 23mpbird 166 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  ->  M #  0 )
25 simprr 522 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  ->  N  =/=  0 )
26 zapne 9261 . . . . . . . . . . 11  |-  ( ( N  e.  ZZ  /\  0  e.  ZZ )  ->  ( N #  0  <->  N  =/=  0 ) )
2716, 21, 26sylancl 410 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  ->  ( N #  0  <->  N  =/=  0
) )
2825, 27mpbird 166 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  ->  N #  0 )
2918, 19, 24, 28mulap0d 8551 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  ->  ( M  x.  N ) #  0 )
30 zapne 9261 . . . . . . . . 9  |-  ( ( ( M  x.  N
)  e.  ZZ  /\  0  e.  ZZ )  ->  ( ( M  x.  N ) #  0  <->  ( M  x.  N )  =/=  0
) )
3117, 21, 30sylancl 410 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  ->  (
( M  x.  N
) #  0  <->  ( M  x.  N )  =/=  0
) )
3229, 31mpbid 146 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  ->  ( M  x.  N )  =/=  0 )
33 nnabscl 11038 . . . . . . 7  |-  ( ( ( M  x.  N
)  e.  ZZ  /\  ( M  x.  N
)  =/=  0 )  ->  ( abs `  ( M  x.  N )
)  e.  NN )
3417, 32, 33syl2anc 409 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  ->  ( abs `  ( M  x.  N ) )  e.  NN )
35 nnuz 9497 . . . . . 6  |-  NN  =  ( ZZ>= `  1 )
3634, 35eleqtrdi 2258 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  ->  ( abs `  ( M  x.  N ) )  e.  ( ZZ>= `  1 )
)
37 simpl1 990 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  ->  A  e.  ZZ )
38 eqid 2165 . . . . . . . . 9  |-  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L
n ) ^ (
n  pCnt  M )
) ,  1 ) )  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L
n ) ^ (
n  pCnt  M )
) ,  1 ) )
3938lgsfcl3 13522 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  M  =/=  0 )  ->  (
n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  M
) ) ,  1 ) ) : NN --> ZZ )
4037, 15, 20, 39syl3anc 1228 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  ->  (
n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  M
) ) ,  1 ) ) : NN --> ZZ )
41 elnnuz 9498 . . . . . . . 8  |-  ( k  e.  NN  <->  k  e.  ( ZZ>= `  1 )
)
4241biimpri 132 . . . . . . 7  |-  ( k  e.  ( ZZ>= `  1
)  ->  k  e.  NN )
43 ffvelrn 5617 . . . . . . 7  |-  ( ( ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  M
) ) ,  1 ) ) : NN --> ZZ  /\  k  e.  NN )  ->  ( ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L
n ) ^ (
n  pCnt  M )
) ,  1 ) ) `  k )  e.  ZZ )
4440, 42, 43syl2an 287 . . . . . 6  |-  ( ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0 ) )  /\  k  e.  ( ZZ>= ` 
1 ) )  -> 
( ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^ ( n 
pCnt  M ) ) ,  1 ) ) `  k )  e.  ZZ )
4544zcnd 9310 . . . . 5  |-  ( ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0 ) )  /\  k  e.  ( ZZ>= ` 
1 ) )  -> 
( ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^ ( n 
pCnt  M ) ) ,  1 ) ) `  k )  e.  CC )
46 eqid 2165 . . . . . . . . 9  |-  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L
n ) ^ (
n  pCnt  N )
) ,  1 ) )  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L
n ) ^ (
n  pCnt  N )
) ,  1 ) )
4746lgsfcl3 13522 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  (
n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) : NN --> ZZ )
4837, 16, 25, 47syl3anc 1228 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  ->  (
n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) : NN --> ZZ )
49 ffvelrn 5617 . . . . . . 7  |-  ( ( ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) : NN --> ZZ  /\  k  e.  NN )  ->  ( ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L
n ) ^ (
n  pCnt  N )
) ,  1 ) ) `  k )  e.  ZZ )
5048, 42, 49syl2an 287 . . . . . 6  |-  ( ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0 ) )  /\  k  e.  ( ZZ>= ` 
1 ) )  -> 
( ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^ ( n 
pCnt  N ) ) ,  1 ) ) `  k )  e.  ZZ )
5150zcnd 9310 . . . . 5  |-  ( ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0 ) )  /\  k  e.  ( ZZ>= ` 
1 ) )  -> 
( ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^ ( n 
pCnt  N ) ) ,  1 ) ) `  k )  e.  CC )
52 simpr 109 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0 ) )  /\  k  e.  ( ZZ>= ` 
1 ) )  /\  k  e.  Prime )  -> 
k  e.  Prime )
5315ad2antrr 480 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0 ) )  /\  k  e.  ( ZZ>= ` 
1 ) )  /\  k  e.  Prime )  ->  M  e.  ZZ )
5420ad2antrr 480 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0 ) )  /\  k  e.  ( ZZ>= ` 
1 ) )  /\  k  e.  Prime )  ->  M  =/=  0 )
5516ad2antrr 480 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0 ) )  /\  k  e.  ( ZZ>= ` 
1 ) )  /\  k  e.  Prime )  ->  N  e.  ZZ )
5625ad2antrr 480 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0 ) )  /\  k  e.  ( ZZ>= ` 
1 ) )  /\  k  e.  Prime )  ->  N  =/=  0 )
57 pcmul 12229 . . . . . . . . . . 11  |-  ( ( k  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( k  pCnt  ( M  x.  N )
)  =  ( ( k  pCnt  M )  +  ( k  pCnt  N ) ) )
5852, 53, 54, 55, 56, 57syl122anc 1237 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0 ) )  /\  k  e.  ( ZZ>= ` 
1 ) )  /\  k  e.  Prime )  -> 
( k  pCnt  ( M  x.  N )
)  =  ( ( k  pCnt  M )  +  ( k  pCnt  N ) ) )
5958oveq2d 5857 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0 ) )  /\  k  e.  ( ZZ>= ` 
1 ) )  /\  k  e.  Prime )  -> 
( ( A  /L k ) ^
( k  pCnt  ( M  x.  N )
) )  =  ( ( A  /L
k ) ^ (
( k  pCnt  M
)  +  ( k 
pCnt  N ) ) ) )
6037ad2antrr 480 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0 ) )  /\  k  e.  ( ZZ>= ` 
1 ) )  /\  k  e.  Prime )  ->  A  e.  ZZ )
61 prmz 12039 . . . . . . . . . . . . 13  |-  ( k  e.  Prime  ->  k  e.  ZZ )
6261adantl 275 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0 ) )  /\  k  e.  ( ZZ>= ` 
1 ) )  /\  k  e.  Prime )  -> 
k  e.  ZZ )
63 lgscl 13515 . . . . . . . . . . . 12  |-  ( ( A  e.  ZZ  /\  k  e.  ZZ )  ->  ( A  /L
k )  e.  ZZ )
6460, 62, 63syl2anc 409 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0 ) )  /\  k  e.  ( ZZ>= ` 
1 ) )  /\  k  e.  Prime )  -> 
( A  /L
k )  e.  ZZ )
6564zcnd 9310 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0 ) )  /\  k  e.  ( ZZ>= ` 
1 ) )  /\  k  e.  Prime )  -> 
( A  /L
k )  e.  CC )
66 pczcl 12226 . . . . . . . . . . 11  |-  ( ( k  e.  Prime  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( k  pCnt  N
)  e.  NN0 )
6752, 55, 56, 66syl12anc 1226 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0 ) )  /\  k  e.  ( ZZ>= ` 
1 ) )  /\  k  e.  Prime )  -> 
( k  pCnt  N
)  e.  NN0 )
68 pczcl 12226 . . . . . . . . . . 11  |-  ( ( k  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 ) )  -> 
( k  pCnt  M
)  e.  NN0 )
6952, 53, 54, 68syl12anc 1226 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0 ) )  /\  k  e.  ( ZZ>= ` 
1 ) )  /\  k  e.  Prime )  -> 
( k  pCnt  M
)  e.  NN0 )
7065, 67, 69expaddd 10586 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0 ) )  /\  k  e.  ( ZZ>= ` 
1 ) )  /\  k  e.  Prime )  -> 
( ( A  /L k ) ^
( ( k  pCnt  M )  +  ( k 
pCnt  N ) ) )  =  ( ( ( A  /L k ) ^ ( k 
pCnt  M ) )  x.  ( ( A  /L k ) ^
( k  pCnt  N
) ) ) )
7159, 70eqtrd 2198 . . . . . . . 8  |-  ( ( ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0 ) )  /\  k  e.  ( ZZ>= ` 
1 ) )  /\  k  e.  Prime )  -> 
( ( A  /L k ) ^
( k  pCnt  ( M  x.  N )
) )  =  ( ( ( A  /L k ) ^
( k  pCnt  M
) )  x.  (
( A  /L
k ) ^ (
k  pCnt  N )
) ) )
72 iftrue 3524 . . . . . . . . 9  |-  ( k  e.  Prime  ->  if ( k  e.  Prime ,  ( ( A  /L
k ) ^ (
k  pCnt  ( M  x.  N ) ) ) ,  1 )  =  ( ( A  /L k ) ^
( k  pCnt  ( M  x.  N )
) ) )
7372adantl 275 . . . . . . . 8  |-  ( ( ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0 ) )  /\  k  e.  ( ZZ>= ` 
1 ) )  /\  k  e.  Prime )  ->  if ( k  e.  Prime ,  ( ( A  /L k ) ^
( k  pCnt  ( M  x.  N )
) ) ,  1 )  =  ( ( A  /L k ) ^ ( k 
pCnt  ( M  x.  N ) ) ) )
74 iftrue 3524 . . . . . . . . . 10  |-  ( k  e.  Prime  ->  if ( k  e.  Prime ,  ( ( A  /L
k ) ^ (
k  pCnt  M )
) ,  1 )  =  ( ( A  /L k ) ^ ( k  pCnt  M ) ) )
75 iftrue 3524 . . . . . . . . . 10  |-  ( k  e.  Prime  ->  if ( k  e.  Prime ,  ( ( A  /L
k ) ^ (
k  pCnt  N )
) ,  1 )  =  ( ( A  /L k ) ^ ( k  pCnt  N ) ) )
7674, 75oveq12d 5859 . . . . . . . . 9  |-  ( k  e.  Prime  ->  ( if ( k  e.  Prime ,  ( ( A  /L k ) ^
( k  pCnt  M
) ) ,  1 )  x.  if ( k  e.  Prime ,  ( ( A  /L
k ) ^ (
k  pCnt  N )
) ,  1 ) )  =  ( ( ( A  /L
k ) ^ (
k  pCnt  M )
)  x.  ( ( A  /L k ) ^ ( k 
pCnt  N ) ) ) )
7776adantl 275 . . . . . . . 8  |-  ( ( ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0 ) )  /\  k  e.  ( ZZ>= ` 
1 ) )  /\  k  e.  Prime )  -> 
( if ( k  e.  Prime ,  ( ( A  /L k ) ^ ( k 
pCnt  M ) ) ,  1 )  x.  if ( k  e.  Prime ,  ( ( A  /L k ) ^
( k  pCnt  N
) ) ,  1 ) )  =  ( ( ( A  /L k ) ^
( k  pCnt  M
) )  x.  (
( A  /L
k ) ^ (
k  pCnt  N )
) ) )
7871, 73, 773eqtr4rd 2209 . . . . . . 7  |-  ( ( ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0 ) )  /\  k  e.  ( ZZ>= ` 
1 ) )  /\  k  e.  Prime )  -> 
( if ( k  e.  Prime ,  ( ( A  /L k ) ^ ( k 
pCnt  M ) ) ,  1 )  x.  if ( k  e.  Prime ,  ( ( A  /L k ) ^
( k  pCnt  N
) ) ,  1 ) )  =  if ( k  e.  Prime ,  ( ( A  /L k ) ^
( k  pCnt  ( M  x.  N )
) ) ,  1 ) )
79 1t1e1 9005 . . . . . . . . 9  |-  ( 1  x.  1 )  =  1
80 iffalse 3527 . . . . . . . . . 10  |-  ( -.  k  e.  Prime  ->  if ( k  e.  Prime ,  ( ( A  /L k ) ^
( k  pCnt  M
) ) ,  1 )  =  1 )
81 iffalse 3527 . . . . . . . . . 10  |-  ( -.  k  e.  Prime  ->  if ( k  e.  Prime ,  ( ( A  /L k ) ^
( k  pCnt  N
) ) ,  1 )  =  1 )
8280, 81oveq12d 5859 . . . . . . . . 9  |-  ( -.  k  e.  Prime  ->  ( if ( k  e. 
Prime ,  ( ( A  /L k ) ^ ( k  pCnt  M ) ) ,  1 )  x.  if ( k  e.  Prime ,  ( ( A  /L
k ) ^ (
k  pCnt  N )
) ,  1 ) )  =  ( 1  x.  1 ) )
83 iffalse 3527 . . . . . . . . 9  |-  ( -.  k  e.  Prime  ->  if ( k  e.  Prime ,  ( ( A  /L k ) ^
( k  pCnt  ( M  x.  N )
) ) ,  1 )  =  1 )
8479, 82, 833eqtr4a 2224 . . . . . . . 8  |-  ( -.  k  e.  Prime  ->  ( if ( k  e. 
Prime ,  ( ( A  /L k ) ^ ( k  pCnt  M ) ) ,  1 )  x.  if ( k  e.  Prime ,  ( ( A  /L
k ) ^ (
k  pCnt  N )
) ,  1 ) )  =  if ( k  e.  Prime ,  ( ( A  /L
k ) ^ (
k  pCnt  ( M  x.  N ) ) ) ,  1 ) )
8584adantl 275 . . . . . . 7  |-  ( ( ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0 ) )  /\  k  e.  ( ZZ>= ` 
1 ) )  /\  -.  k  e.  Prime )  ->  ( if ( k  e.  Prime ,  ( ( A  /L
k ) ^ (
k  pCnt  M )
) ,  1 )  x.  if ( k  e.  Prime ,  ( ( A  /L k ) ^ ( k 
pCnt  N ) ) ,  1 ) )  =  if ( k  e. 
Prime ,  ( ( A  /L k ) ^ ( k  pCnt  ( M  x.  N ) ) ) ,  1 ) )
86 prmdc 12058 . . . . . . . . . 10  |-  ( k  e.  NN  -> DECID  k  e.  Prime )
87 exmiddc 826 . . . . . . . . . 10  |-  (DECID  k  e. 
Prime  ->  ( k  e. 
Prime  \/  -.  k  e. 
Prime ) )
8886, 87syl 14 . . . . . . . . 9  |-  ( k  e.  NN  ->  (
k  e.  Prime  \/  -.  k  e.  Prime ) )
8942, 88syl 14 . . . . . . . 8  |-  ( k  e.  ( ZZ>= `  1
)  ->  ( k  e.  Prime  \/  -.  k  e.  Prime ) )
9089adantl 275 . . . . . . 7  |-  ( ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0 ) )  /\  k  e.  ( ZZ>= ` 
1 ) )  -> 
( k  e.  Prime  \/ 
-.  k  e.  Prime ) )
9178, 85, 90mpjaodan 788 . . . . . 6  |-  ( ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0 ) )  /\  k  e.  ( ZZ>= ` 
1 ) )  -> 
( if ( k  e.  Prime ,  ( ( A  /L k ) ^ ( k 
pCnt  M ) ) ,  1 )  x.  if ( k  e.  Prime ,  ( ( A  /L k ) ^
( k  pCnt  N
) ) ,  1 ) )  =  if ( k  e.  Prime ,  ( ( A  /L k ) ^
( k  pCnt  ( M  x.  N )
) ) ,  1 ) )
92 eleq1w 2226 . . . . . . . . 9  |-  ( n  =  k  ->  (
n  e.  Prime  <->  k  e.  Prime ) )
93 oveq2 5849 . . . . . . . . . 10  |-  ( n  =  k  ->  ( A  /L n )  =  ( A  /L k ) )
94 oveq1 5848 . . . . . . . . . 10  |-  ( n  =  k  ->  (
n  pCnt  M )  =  ( k  pCnt  M ) )
9593, 94oveq12d 5859 . . . . . . . . 9  |-  ( n  =  k  ->  (
( A  /L
n ) ^ (
n  pCnt  M )
)  =  ( ( A  /L k ) ^ ( k 
pCnt  M ) ) )
9692, 95ifbieq1d 3541 . . . . . . . 8  |-  ( n  =  k  ->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  M
) ) ,  1 )  =  if ( k  e.  Prime ,  ( ( A  /L
k ) ^ (
k  pCnt  M )
) ,  1 ) )
9742adantl 275 . . . . . . . 8  |-  ( ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0 ) )  /\  k  e.  ( ZZ>= ` 
1 ) )  -> 
k  e.  NN )
98 zexpcl 10466 . . . . . . . . . 10  |-  ( ( ( A  /L
k )  e.  ZZ  /\  ( k  pCnt  M
)  e.  NN0 )  ->  ( ( A  /L k ) ^
( k  pCnt  M
) )  e.  ZZ )
9964, 69, 98syl2anc 409 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0 ) )  /\  k  e.  ( ZZ>= ` 
1 ) )  /\  k  e.  Prime )  -> 
( ( A  /L k ) ^
( k  pCnt  M
) )  e.  ZZ )
100 1zzd 9214 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0 ) )  /\  k  e.  ( ZZ>= ` 
1 ) )  /\  -.  k  e.  Prime )  ->  1  e.  ZZ )
10197, 86syl 14 . . . . . . . . 9  |-  ( ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0 ) )  /\  k  e.  ( ZZ>= ` 
1 ) )  -> DECID  k  e.  Prime )
10299, 100, 101ifcldadc 3548 . . . . . . . 8  |-  ( ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0 ) )  /\  k  e.  ( ZZ>= ` 
1 ) )  ->  if ( k  e.  Prime ,  ( ( A  /L k ) ^
( k  pCnt  M
) ) ,  1 )  e.  ZZ )
10338, 96, 97, 102fvmptd3 5578 . . . . . . 7  |-  ( ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0 ) )  /\  k  e.  ( ZZ>= ` 
1 ) )  -> 
( ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^ ( n 
pCnt  M ) ) ,  1 ) ) `  k )  =  if ( k  e.  Prime ,  ( ( A  /L k ) ^
( k  pCnt  M
) ) ,  1 ) )
104 oveq1 5848 . . . . . . . . . 10  |-  ( n  =  k  ->  (
n  pCnt  N )  =  ( k  pCnt  N ) )
10593, 104oveq12d 5859 . . . . . . . . 9  |-  ( n  =  k  ->  (
( A  /L
n ) ^ (
n  pCnt  N )
)  =  ( ( A  /L k ) ^ ( k 
pCnt  N ) ) )
10692, 105ifbieq1d 3541 . . . . . . . 8  |-  ( n  =  k  ->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  N
) ) ,  1 )  =  if ( k  e.  Prime ,  ( ( A  /L
k ) ^ (
k  pCnt  N )
) ,  1 ) )
107 zexpcl 10466 . . . . . . . . . 10  |-  ( ( ( A  /L
k )  e.  ZZ  /\  ( k  pCnt  N
)  e.  NN0 )  ->  ( ( A  /L k ) ^
( k  pCnt  N
) )  e.  ZZ )
10864, 67, 107syl2anc 409 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0 ) )  /\  k  e.  ( ZZ>= ` 
1 ) )  /\  k  e.  Prime )  -> 
( ( A  /L k ) ^
( k  pCnt  N
) )  e.  ZZ )
109108, 100, 101ifcldadc 3548 . . . . . . . 8  |-  ( ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0 ) )  /\  k  e.  ( ZZ>= ` 
1 ) )  ->  if ( k  e.  Prime ,  ( ( A  /L k ) ^
( k  pCnt  N
) ) ,  1 )  e.  ZZ )
11046, 106, 97, 109fvmptd3 5578 . . . . . . 7  |-  ( ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0 ) )  /\  k  e.  ( ZZ>= ` 
1 ) )  -> 
( ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^ ( n 
pCnt  N ) ) ,  1 ) ) `  k )  =  if ( k  e.  Prime ,  ( ( A  /L k ) ^
( k  pCnt  N
) ) ,  1 ) )
111103, 110oveq12d 5859 . . . . . 6  |-  ( ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0 ) )  /\  k  e.  ( ZZ>= ` 
1 ) )  -> 
( ( ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L
n ) ^ (
n  pCnt  M )
) ,  1 ) ) `  k )  x.  ( ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L
n ) ^ (
n  pCnt  N )
) ,  1 ) ) `  k ) )  =  ( if ( k  e.  Prime ,  ( ( A  /L k ) ^
( k  pCnt  M
) ) ,  1 )  x.  if ( k  e.  Prime ,  ( ( A  /L
k ) ^ (
k  pCnt  N )
) ,  1 ) ) )
112 eqid 2165 . . . . . . 7  |-  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L
n ) ^ (
n  pCnt  ( M  x.  N ) ) ) ,  1 ) )  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^ ( n 
pCnt  ( M  x.  N ) ) ) ,  1 ) )
113 oveq1 5848 . . . . . . . . 9  |-  ( n  =  k  ->  (
n  pCnt  ( M  x.  N ) )  =  ( k  pCnt  ( M  x.  N )
) )
11493, 113oveq12d 5859 . . . . . . . 8  |-  ( n  =  k  ->  (
( A  /L
n ) ^ (
n  pCnt  ( M  x.  N ) ) )  =  ( ( A  /L k ) ^ ( k  pCnt  ( M  x.  N ) ) ) )
11592, 114ifbieq1d 3541 . . . . . . 7  |-  ( n  =  k  ->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  ( M  x.  N )
) ) ,  1 )  =  if ( k  e.  Prime ,  ( ( A  /L
k ) ^ (
k  pCnt  ( M  x.  N ) ) ) ,  1 ) )
11617ad2antrr 480 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0 ) )  /\  k  e.  ( ZZ>= ` 
1 ) )  /\  k  e.  Prime )  -> 
( M  x.  N
)  e.  ZZ )
11732ad2antrr 480 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0 ) )  /\  k  e.  ( ZZ>= ` 
1 ) )  /\  k  e.  Prime )  -> 
( M  x.  N
)  =/=  0 )
118 pczcl 12226 . . . . . . . . . 10  |-  ( ( k  e.  Prime  /\  (
( M  x.  N
)  e.  ZZ  /\  ( M  x.  N
)  =/=  0 ) )  ->  ( k  pCnt  ( M  x.  N
) )  e.  NN0 )
11952, 116, 117, 118syl12anc 1226 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0 ) )  /\  k  e.  ( ZZ>= ` 
1 ) )  /\  k  e.  Prime )  -> 
( k  pCnt  ( M  x.  N )
)  e.  NN0 )
120 zexpcl 10466 . . . . . . . . 9  |-  ( ( ( A  /L
k )  e.  ZZ  /\  ( k  pCnt  ( M  x.  N )
)  e.  NN0 )  ->  ( ( A  /L k ) ^
( k  pCnt  ( M  x.  N )
) )  e.  ZZ )
12164, 119, 120syl2anc 409 . . . . . . . 8  |-  ( ( ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0 ) )  /\  k  e.  ( ZZ>= ` 
1 ) )  /\  k  e.  Prime )  -> 
( ( A  /L k ) ^
( k  pCnt  ( M  x.  N )
) )  e.  ZZ )
122121, 100, 101ifcldadc 3548 . . . . . . 7  |-  ( ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0 ) )  /\  k  e.  ( ZZ>= ` 
1 ) )  ->  if ( k  e.  Prime ,  ( ( A  /L k ) ^
( k  pCnt  ( M  x.  N )
) ) ,  1 )  e.  ZZ )
123112, 115, 97, 122fvmptd3 5578 . . . . . 6  |-  ( ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0 ) )  /\  k  e.  ( ZZ>= ` 
1 ) )  -> 
( ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^ ( n 
pCnt  ( M  x.  N ) ) ) ,  1 ) ) `
 k )  =  if ( k  e. 
Prime ,  ( ( A  /L k ) ^ ( k  pCnt  ( M  x.  N ) ) ) ,  1 ) )
12491, 111, 1233eqtr4rd 2209 . . . . 5  |-  ( ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0 ) )  /\  k  e.  ( ZZ>= ` 
1 ) )  -> 
( ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^ ( n 
pCnt  ( M  x.  N ) ) ) ,  1 ) ) `
 k )  =  ( ( ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L
n ) ^ (
n  pCnt  M )
) ,  1 ) ) `  k )  x.  ( ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L
n ) ^ (
n  pCnt  N )
) ,  1 ) ) `  k ) ) )
12536, 45, 51, 124prod3fmul 11478 . . . 4  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  ->  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  ( M  x.  N )
) ) ,  1 ) ) ) `  ( abs `  ( M  x.  N ) ) )  =  ( (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^ ( n 
pCnt  M ) ) ,  1 ) ) ) `
 ( abs `  ( M  x.  N )
) )  x.  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) ) `  ( abs `  ( M  x.  N ) ) ) ) )
12637, 15, 16, 20, 25, 38lgsdilem2 13537 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  ->  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  M
) ) ,  1 ) ) ) `  ( abs `  M ) )  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  M
) ) ,  1 ) ) ) `  ( abs `  ( M  x.  N ) ) ) )
12737, 16, 15, 25, 20, 46lgsdilem2 13537 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  ->  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) ) `  ( abs `  N ) )  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) ) `  ( abs `  ( N  x.  M ) ) ) )
12818, 19mulcomd 7916 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  ->  ( M  x.  N )  =  ( N  x.  M ) )
129128fveq2d 5489 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  ->  ( abs `  ( M  x.  N ) )  =  ( abs `  ( N  x.  M )
) )
130129fveq2d 5489 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  ->  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) ) `  ( abs `  ( M  x.  N ) ) )  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) ) `  ( abs `  ( N  x.  M ) ) ) )
131127, 130eqtr4d 2201 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  ->  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) ) `  ( abs `  N ) )  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) ) `  ( abs `  ( M  x.  N ) ) ) )
132126, 131oveq12d 5859 . . . 4  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  ->  (
(  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^ ( n 
pCnt  M ) ) ,  1 ) ) ) `
 ( abs `  M
) )  x.  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) ) `  ( abs `  N ) ) )  =  ( (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L
n ) ^ (
n  pCnt  M )
) ,  1 ) ) ) `  ( abs `  ( M  x.  N ) ) )  x.  (  seq 1
(  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) ) `  ( abs `  ( M  x.  N ) ) ) ) )
133125, 132eqtr4d 2201 . . 3  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  ->  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  ( M  x.  N )
) ) ,  1 ) ) ) `  ( abs `  ( M  x.  N ) ) )  =  ( (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^ ( n 
pCnt  M ) ) ,  1 ) ) ) `
 ( abs `  M
) )  x.  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) ) `  ( abs `  N ) ) ) )
13414, 133oveq12d 5859 . 2  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  ->  ( if ( ( ( M  x.  N )  <  0  /\  A  <  0 ) ,  -u
1 ,  1 )  x.  (  seq 1
(  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  ( M  x.  N )
) ) ,  1 ) ) ) `  ( abs `  ( M  x.  N ) ) ) )  =  ( ( if ( ( M  <  0  /\  A  <  0 ) ,  -u 1 ,  1 )  x.  if ( ( N  <  0  /\  A  <  0
) ,  -u 1 ,  1 ) )  x.  ( (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  M
) ) ,  1 ) ) ) `  ( abs `  M ) )  x.  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) ) `  ( abs `  N ) ) ) ) )
135112lgsval4 13521 . . 3  |-  ( ( A  e.  ZZ  /\  ( M  x.  N
)  e.  ZZ  /\  ( M  x.  N
)  =/=  0 )  ->  ( A  /L ( M  x.  N ) )  =  ( if ( ( ( M  x.  N
)  <  0  /\  A  <  0 ) , 
-u 1 ,  1 )  x.  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  ( M  x.  N )
) ) ,  1 ) ) ) `  ( abs `  ( M  x.  N ) ) ) ) )
13637, 17, 32, 135syl3anc 1228 . 2  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  ->  ( A  /L ( M  x.  N ) )  =  ( if ( ( ( M  x.  N )  <  0  /\  A  <  0
) ,  -u 1 ,  1 )  x.  (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L
n ) ^ (
n  pCnt  ( M  x.  N ) ) ) ,  1 ) ) ) `  ( abs `  ( M  x.  N
) ) ) ) )
13738lgsval4 13521 . . . . 5  |-  ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  M  =/=  0 )  ->  ( A  /L M )  =  ( if ( ( M  <  0  /\  A  <  0
) ,  -u 1 ,  1 )  x.  (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L
n ) ^ (
n  pCnt  M )
) ,  1 ) ) ) `  ( abs `  M ) ) ) )
13837, 15, 20, 137syl3anc 1228 . . . 4  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  ->  ( A  /L M )  =  ( if ( ( M  <  0  /\  A  <  0
) ,  -u 1 ,  1 )  x.  (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L
n ) ^ (
n  pCnt  M )
) ,  1 ) ) ) `  ( abs `  M ) ) ) )
13946lgsval4 13521 . . . . 5  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  ( A  /L N )  =  ( if ( ( N  <  0  /\  A  <  0
) ,  -u 1 ,  1 )  x.  (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L
n ) ^ (
n  pCnt  N )
) ,  1 ) ) ) `  ( abs `  N ) ) ) )
14037, 16, 25, 139syl3anc 1228 . . . 4  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  ->  ( A  /L N )  =  ( if ( ( N  <  0  /\  A  <  0
) ,  -u 1 ,  1 )  x.  (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L
n ) ^ (
n  pCnt  N )
) ,  1 ) ) ) `  ( abs `  N ) ) ) )
141138, 140oveq12d 5859 . . 3  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  ->  (
( A  /L
M )  x.  ( A  /L N ) )  =  ( ( if ( ( M  <  0  /\  A  <  0 ) ,  -u
1 ,  1 )  x.  (  seq 1
(  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  M
) ) ,  1 ) ) ) `  ( abs `  M ) ) )  x.  ( if ( ( N  <  0  /\  A  <  0 ) ,  -u
1 ,  1 )  x.  (  seq 1
(  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) ) `  ( abs `  N ) ) ) ) )
142 neg1z 9219 . . . . . . 7  |-  -u 1  e.  ZZ
143142a1i 9 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  ->  -u 1  e.  ZZ )
144 1zzd 9214 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  ->  1  e.  ZZ )
145 zdclt 9264 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  0  e.  ZZ )  -> DECID  M  <  0 )
14615, 21, 145sylancl 410 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  -> DECID  M  <  0
)
147 zdclt 9264 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  0  e.  ZZ )  -> DECID  A  <  0 )
14837, 21, 147sylancl 410 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  -> DECID  A  <  0
)
149 dcan2 924 . . . . . . 7  |-  (DECID  M  <  0  ->  (DECID  A  <  0  -> DECID 
( M  <  0  /\  A  <  0
) ) )
150146, 148, 149sylc 62 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  -> DECID  ( M  <  0  /\  A  <  0
) )
151143, 144, 150ifcldcd 3554 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  ->  if ( ( M  <  0  /\  A  <  0 ) ,  -u
1 ,  1 )  e.  ZZ )
152151zcnd 9310 . . . 4  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  ->  if ( ( M  <  0  /\  A  <  0 ) ,  -u
1 ,  1 )  e.  CC )
15340ffvelrnda 5619 . . . . . . 7  |-  ( ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0 ) )  /\  k  e.  NN )  ->  ( ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^ ( n 
pCnt  M ) ) ,  1 ) ) `  k )  e.  ZZ )
154 zmulcl 9240 . . . . . . . 8  |-  ( ( k  e.  ZZ  /\  v  e.  ZZ )  ->  ( k  x.  v
)  e.  ZZ )
155154adantl 275 . . . . . . 7  |-  ( ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0 ) )  /\  ( k  e.  ZZ  /\  v  e.  ZZ ) )  ->  ( k  x.  v )  e.  ZZ )
15635, 144, 153, 155seqf 10392 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  ->  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  M
) ) ,  1 ) ) ) : NN --> ZZ )
157 nnabscl 11038 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  M  =/=  0 )  -> 
( abs `  M
)  e.  NN )
15815, 20, 157syl2anc 409 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  ->  ( abs `  M )  e.  NN )
159156, 158ffvelrnd 5620 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  ->  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  M
) ) ,  1 ) ) ) `  ( abs `  M ) )  e.  ZZ )
160159zcnd 9310 . . . 4  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  ->  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  M
) ) ,  1 ) ) ) `  ( abs `  M ) )  e.  CC )
161 zdclt 9264 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  0  e.  ZZ )  -> DECID  N  <  0 )
16216, 21, 161sylancl 410 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  -> DECID  N  <  0
)
163 dcan2 924 . . . . . . 7  |-  (DECID  N  <  0  ->  (DECID  A  <  0  -> DECID 
( N  <  0  /\  A  <  0
) ) )
164162, 148, 163sylc 62 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  -> DECID  ( N  <  0  /\  A  <  0
) )
165143, 144, 164ifcldcd 3554 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  ->  if ( ( N  <  0  /\  A  <  0 ) ,  -u
1 ,  1 )  e.  ZZ )
166165zcnd 9310 . . . 4  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  ->  if ( ( N  <  0  /\  A  <  0 ) ,  -u
1 ,  1 )  e.  CC )
16748ffvelrnda 5619 . . . . . . 7  |-  ( ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0 ) )  /\  k  e.  NN )  ->  ( ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^ ( n 
pCnt  N ) ) ,  1 ) ) `  k )  e.  ZZ )
16835, 144, 167, 155seqf 10392 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  ->  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) ) : NN --> ZZ )
169 nnabscl 11038 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  N  =/=  0 )  -> 
( abs `  N
)  e.  NN )
17016, 25, 169syl2anc 409 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  ->  ( abs `  N )  e.  NN )
171168, 170ffvelrnd 5620 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  ->  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) ) `  ( abs `  N ) )  e.  ZZ )
172171zcnd 9310 . . . 4  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  ->  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) ) `  ( abs `  N ) )  e.  CC )
173152, 160, 166, 172mul4d 8049 . . 3  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  ->  (
( if ( ( M  <  0  /\  A  <  0 ) ,  -u 1 ,  1 )  x.  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  M
) ) ,  1 ) ) ) `  ( abs `  M ) ) )  x.  ( if ( ( N  <  0  /\  A  <  0 ) ,  -u
1 ,  1 )  x.  (  seq 1
(  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) ) `  ( abs `  N ) ) ) )  =  ( ( if ( ( M  <  0  /\  A  <  0
) ,  -u 1 ,  1 )  x.  if ( ( N  <  0  /\  A  <  0 ) ,  -u
1 ,  1 ) )  x.  ( (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^ ( n 
pCnt  M ) ) ,  1 ) ) ) `
 ( abs `  M
) )  x.  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) ) `  ( abs `  N ) ) ) ) )
174141, 173eqtrd 2198 . 2  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  ->  (
( A  /L
M )  x.  ( A  /L N ) )  =  ( ( if ( ( M  <  0  /\  A  <  0 ) ,  -u
1 ,  1 )  x.  if ( ( N  <  0  /\  A  <  0 ) ,  -u 1 ,  1 ) )  x.  (
(  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^ ( n 
pCnt  M ) ) ,  1 ) ) ) `
 ( abs `  M
) )  x.  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) ) `  ( abs `  N ) ) ) ) )
175134, 136, 1743eqtr4d 2208 1  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  ->  ( A  /L ( M  x.  N ) )  =  ( ( A  /L M )  x.  ( A  /L N ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 698  DECID wdc 824    /\ w3a 968    = wceq 1343    e. wcel 2136    =/= wne 2335   ifcif 3519   class class class wbr 3981    |-> cmpt 4042   -->wf 5183   ` cfv 5187  (class class class)co 5841   0cc0 7749   1c1 7750    + caddc 7752    x. cmul 7754    < clt 7929   -ucneg 8066   # cap 8475   NNcn 8853   NN0cn0 9110   ZZcz 9187   ZZ>=cuz 9462    seqcseq 10376   ^cexp 10450   abscabs 10935   Primecprime 12035    pCnt cpc 12212    /Lclgs 13498
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4096  ax-sep 4099  ax-nul 4107  ax-pow 4152  ax-pr 4186  ax-un 4410  ax-setind 4513  ax-iinf 4564  ax-cnex 7840  ax-resscn 7841  ax-1cn 7842  ax-1re 7843  ax-icn 7844  ax-addcl 7845  ax-addrcl 7846  ax-mulcl 7847  ax-mulrcl 7848  ax-addcom 7849  ax-mulcom 7850  ax-addass 7851  ax-mulass 7852  ax-distr 7853  ax-i2m1 7854  ax-0lt1 7855  ax-1rid 7856  ax-0id 7857  ax-rnegex 7858  ax-precex 7859  ax-cnre 7860  ax-pre-ltirr 7861  ax-pre-ltwlin 7862  ax-pre-lttrn 7863  ax-pre-apti 7864  ax-pre-ltadd 7865  ax-pre-mulgt0 7866  ax-pre-mulext 7867  ax-arch 7868  ax-caucvg 7869
This theorem depends on definitions:  df-bi 116  df-stab 821  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-xor 1366  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2296  df-ne 2336  df-nel 2431  df-ral 2448  df-rex 2449  df-reu 2450  df-rmo 2451  df-rab 2452  df-v 2727  df-sbc 2951  df-csb 3045  df-dif 3117  df-un 3119  df-in 3121  df-ss 3128  df-nul 3409  df-if 3520  df-pw 3560  df-sn 3581  df-pr 3582  df-op 3584  df-uni 3789  df-int 3824  df-iun 3867  df-br 3982  df-opab 4043  df-mpt 4044  df-tr 4080  df-id 4270  df-po 4273  df-iso 4274  df-iord 4343  df-on 4345  df-ilim 4346  df-suc 4348  df-iom 4567  df-xp 4609  df-rel 4610  df-cnv 4611  df-co 4612  df-dm 4613  df-rn 4614  df-res 4615  df-ima 4616  df-iota 5152  df-fun 5189  df-fn 5190  df-f 5191  df-f1 5192  df-fo 5193  df-f1o 5194  df-fv 5195  df-isom 5196  df-riota 5797  df-ov 5844  df-oprab 5845  df-mpo 5846  df-1st 6105  df-2nd 6106  df-recs 6269  df-irdg 6334  df-frec 6355  df-1o 6380  df-2o 6381  df-oadd 6384  df-er 6497  df-en 6703  df-dom 6704  df-fin 6705  df-sup 6945  df-inf 6946  df-pnf 7931  df-mnf 7932  df-xr 7933  df-ltxr 7934  df-le 7935  df-sub 8067  df-neg 8068  df-reap 8469  df-ap 8476  df-div 8565  df-inn 8854  df-2 8912  df-3 8913  df-4 8914  df-5 8915  df-6 8916  df-7 8917  df-8 8918  df-n0 9111  df-z 9188  df-uz 9463  df-q 9554  df-rp 9586  df-fz 9941  df-fzo 10074  df-fl 10201  df-mod 10254  df-seqfrec 10377  df-exp 10451  df-ihash 10685  df-cj 10780  df-re 10781  df-im 10782  df-rsqrt 10936  df-abs 10937  df-clim 11216  df-proddc 11488  df-dvds 11724  df-gcd 11872  df-prm 12036  df-phi 12139  df-pc 12213  df-lgs 13499
This theorem is referenced by:  lgssq2  13542  lgsdinn0  13549
  Copyright terms: Public domain W3C validator