ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lgsdi Unicode version

Theorem lgsdi 15194
Description: The Legendre symbol is completely multiplicative in its right argument. Generalization of theorem 9.9(b) in [ApostolNT] p. 188 (which assumes that  M and  N are odd positive integers). (Contributed by Mario Carneiro, 5-Feb-2015.)
Assertion
Ref Expression
lgsdi  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  ->  ( A  /L ( M  x.  N ) )  =  ( ( A  /L M )  x.  ( A  /L N ) ) )

Proof of Theorem lgsdi
Dummy variables  k  n  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 3anrot 985 . . . . 5  |-  ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  <->  ( M  e.  ZZ  /\  N  e.  ZZ  /\  A  e.  ZZ ) )
2 lgsdilem 15184 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  A  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  ->  if ( ( A  <  0  /\  ( M  x.  N )  <  0 ) ,  -u
1 ,  1 )  =  ( if ( ( A  <  0  /\  M  <  0
) ,  -u 1 ,  1 )  x.  if ( ( A  <  0  /\  N  <  0 ) ,  -u
1 ,  1 ) ) )
31, 2sylanb 284 . . . 4  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  ->  if ( ( A  <  0  /\  ( M  x.  N )  <  0 ) ,  -u
1 ,  1 )  =  ( if ( ( A  <  0  /\  M  <  0
) ,  -u 1 ,  1 )  x.  if ( ( A  <  0  /\  N  <  0 ) ,  -u
1 ,  1 ) ) )
4 ancom 266 . . . . 5  |-  ( ( ( M  x.  N
)  <  0  /\  A  <  0 )  <->  ( A  <  0  /\  ( M  x.  N )  <  0 ) )
5 ifbi 3578 . . . . 5  |-  ( ( ( ( M  x.  N )  <  0  /\  A  <  0
)  <->  ( A  <  0  /\  ( M  x.  N )  <  0 ) )  ->  if ( ( ( M  x.  N )  <  0  /\  A  <  0 ) ,  -u
1 ,  1 )  =  if ( ( A  <  0  /\  ( M  x.  N
)  <  0 ) ,  -u 1 ,  1 ) )
64, 5ax-mp 5 . . . 4  |-  if ( ( ( M  x.  N )  <  0  /\  A  <  0
) ,  -u 1 ,  1 )  =  if ( ( A  <  0  /\  ( M  x.  N )  <  0 ) ,  -u
1 ,  1 )
7 ancom 266 . . . . . 6  |-  ( ( M  <  0  /\  A  <  0 )  <-> 
( A  <  0  /\  M  <  0
) )
8 ifbi 3578 . . . . . 6  |-  ( ( ( M  <  0  /\  A  <  0
)  <->  ( A  <  0  /\  M  <  0 ) )  ->  if ( ( M  <  0  /\  A  <  0 ) ,  -u
1 ,  1 )  =  if ( ( A  <  0  /\  M  <  0 ) ,  -u 1 ,  1 ) )
97, 8ax-mp 5 . . . . 5  |-  if ( ( M  <  0  /\  A  <  0
) ,  -u 1 ,  1 )  =  if ( ( A  <  0  /\  M  <  0 ) ,  -u
1 ,  1 )
10 ancom 266 . . . . . 6  |-  ( ( N  <  0  /\  A  <  0 )  <-> 
( A  <  0  /\  N  <  0
) )
11 ifbi 3578 . . . . . 6  |-  ( ( ( N  <  0  /\  A  <  0
)  <->  ( A  <  0  /\  N  <  0 ) )  ->  if ( ( N  <  0  /\  A  <  0 ) ,  -u
1 ,  1 )  =  if ( ( A  <  0  /\  N  <  0 ) ,  -u 1 ,  1 ) )
1210, 11ax-mp 5 . . . . 5  |-  if ( ( N  <  0  /\  A  <  0
) ,  -u 1 ,  1 )  =  if ( ( A  <  0  /\  N  <  0 ) ,  -u
1 ,  1 )
139, 12oveq12i 5931 . . . 4  |-  ( if ( ( M  <  0  /\  A  <  0 ) ,  -u
1 ,  1 )  x.  if ( ( N  <  0  /\  A  <  0 ) ,  -u 1 ,  1 ) )  =  ( if ( ( A  <  0  /\  M  <  0 ) ,  -u
1 ,  1 )  x.  if ( ( A  <  0  /\  N  <  0 ) ,  -u 1 ,  1 ) )
143, 6, 133eqtr4g 2251 . . 3  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  ->  if ( ( ( M  x.  N )  <  0  /\  A  <  0 ) ,  -u
1 ,  1 )  =  ( if ( ( M  <  0  /\  A  <  0
) ,  -u 1 ,  1 )  x.  if ( ( N  <  0  /\  A  <  0 ) ,  -u
1 ,  1 ) ) )
15 simpl2 1003 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  ->  M  e.  ZZ )
16 simpl3 1004 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  ->  N  e.  ZZ )
1715, 16zmulcld 9448 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  ->  ( M  x.  N )  e.  ZZ )
1815zcnd 9443 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  ->  M  e.  CC )
1916zcnd 9443 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  ->  N  e.  CC )
20 simprl 529 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  ->  M  =/=  0 )
21 0z 9331 . . . . . . . . . . 11  |-  0  e.  ZZ
22 zapne 9394 . . . . . . . . . . 11  |-  ( ( M  e.  ZZ  /\  0  e.  ZZ )  ->  ( M #  0  <->  M  =/=  0 ) )
2315, 21, 22sylancl 413 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  ->  ( M #  0  <->  M  =/=  0
) )
2420, 23mpbird 167 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  ->  M #  0 )
25 simprr 531 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  ->  N  =/=  0 )
26 zapne 9394 . . . . . . . . . . 11  |-  ( ( N  e.  ZZ  /\  0  e.  ZZ )  ->  ( N #  0  <->  N  =/=  0 ) )
2716, 21, 26sylancl 413 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  ->  ( N #  0  <->  N  =/=  0
) )
2825, 27mpbird 167 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  ->  N #  0 )
2918, 19, 24, 28mulap0d 8679 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  ->  ( M  x.  N ) #  0 )
30 zapne 9394 . . . . . . . . 9  |-  ( ( ( M  x.  N
)  e.  ZZ  /\  0  e.  ZZ )  ->  ( ( M  x.  N ) #  0  <->  ( M  x.  N )  =/=  0
) )
3117, 21, 30sylancl 413 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  ->  (
( M  x.  N
) #  0  <->  ( M  x.  N )  =/=  0
) )
3229, 31mpbid 147 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  ->  ( M  x.  N )  =/=  0 )
33 nnabscl 11247 . . . . . . 7  |-  ( ( ( M  x.  N
)  e.  ZZ  /\  ( M  x.  N
)  =/=  0 )  ->  ( abs `  ( M  x.  N )
)  e.  NN )
3417, 32, 33syl2anc 411 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  ->  ( abs `  ( M  x.  N ) )  e.  NN )
35 nnuz 9631 . . . . . 6  |-  NN  =  ( ZZ>= `  1 )
3634, 35eleqtrdi 2286 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  ->  ( abs `  ( M  x.  N ) )  e.  ( ZZ>= `  1 )
)
37 simpl1 1002 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  ->  A  e.  ZZ )
38 eqid 2193 . . . . . . . . 9  |-  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L
n ) ^ (
n  pCnt  M )
) ,  1 ) )  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L
n ) ^ (
n  pCnt  M )
) ,  1 ) )
3938lgsfcl3 15178 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  M  =/=  0 )  ->  (
n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  M
) ) ,  1 ) ) : NN --> ZZ )
4037, 15, 20, 39syl3anc 1249 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  ->  (
n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  M
) ) ,  1 ) ) : NN --> ZZ )
41 elnnuz 9632 . . . . . . . 8  |-  ( k  e.  NN  <->  k  e.  ( ZZ>= `  1 )
)
4241biimpri 133 . . . . . . 7  |-  ( k  e.  ( ZZ>= `  1
)  ->  k  e.  NN )
43 ffvelcdm 5692 . . . . . . 7  |-  ( ( ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  M
) ) ,  1 ) ) : NN --> ZZ  /\  k  e.  NN )  ->  ( ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L
n ) ^ (
n  pCnt  M )
) ,  1 ) ) `  k )  e.  ZZ )
4440, 42, 43syl2an 289 . . . . . 6  |-  ( ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0 ) )  /\  k  e.  ( ZZ>= ` 
1 ) )  -> 
( ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^ ( n 
pCnt  M ) ) ,  1 ) ) `  k )  e.  ZZ )
4544zcnd 9443 . . . . 5  |-  ( ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0 ) )  /\  k  e.  ( ZZ>= ` 
1 ) )  -> 
( ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^ ( n 
pCnt  M ) ) ,  1 ) ) `  k )  e.  CC )
46 eqid 2193 . . . . . . . . 9  |-  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L
n ) ^ (
n  pCnt  N )
) ,  1 ) )  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L
n ) ^ (
n  pCnt  N )
) ,  1 ) )
4746lgsfcl3 15178 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  (
n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) : NN --> ZZ )
4837, 16, 25, 47syl3anc 1249 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  ->  (
n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) : NN --> ZZ )
49 ffvelcdm 5692 . . . . . . 7  |-  ( ( ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) : NN --> ZZ  /\  k  e.  NN )  ->  ( ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L
n ) ^ (
n  pCnt  N )
) ,  1 ) ) `  k )  e.  ZZ )
5048, 42, 49syl2an 289 . . . . . 6  |-  ( ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0 ) )  /\  k  e.  ( ZZ>= ` 
1 ) )  -> 
( ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^ ( n 
pCnt  N ) ) ,  1 ) ) `  k )  e.  ZZ )
5150zcnd 9443 . . . . 5  |-  ( ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0 ) )  /\  k  e.  ( ZZ>= ` 
1 ) )  -> 
( ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^ ( n 
pCnt  N ) ) ,  1 ) ) `  k )  e.  CC )
52 simpr 110 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0 ) )  /\  k  e.  ( ZZ>= ` 
1 ) )  /\  k  e.  Prime )  -> 
k  e.  Prime )
5315ad2antrr 488 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0 ) )  /\  k  e.  ( ZZ>= ` 
1 ) )  /\  k  e.  Prime )  ->  M  e.  ZZ )
5420ad2antrr 488 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0 ) )  /\  k  e.  ( ZZ>= ` 
1 ) )  /\  k  e.  Prime )  ->  M  =/=  0 )
5516ad2antrr 488 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0 ) )  /\  k  e.  ( ZZ>= ` 
1 ) )  /\  k  e.  Prime )  ->  N  e.  ZZ )
5625ad2antrr 488 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0 ) )  /\  k  e.  ( ZZ>= ` 
1 ) )  /\  k  e.  Prime )  ->  N  =/=  0 )
57 pcmul 12442 . . . . . . . . . . 11  |-  ( ( k  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( k  pCnt  ( M  x.  N )
)  =  ( ( k  pCnt  M )  +  ( k  pCnt  N ) ) )
5852, 53, 54, 55, 56, 57syl122anc 1258 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0 ) )  /\  k  e.  ( ZZ>= ` 
1 ) )  /\  k  e.  Prime )  -> 
( k  pCnt  ( M  x.  N )
)  =  ( ( k  pCnt  M )  +  ( k  pCnt  N ) ) )
5958oveq2d 5935 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0 ) )  /\  k  e.  ( ZZ>= ` 
1 ) )  /\  k  e.  Prime )  -> 
( ( A  /L k ) ^
( k  pCnt  ( M  x.  N )
) )  =  ( ( A  /L
k ) ^ (
( k  pCnt  M
)  +  ( k 
pCnt  N ) ) ) )
6037ad2antrr 488 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0 ) )  /\  k  e.  ( ZZ>= ` 
1 ) )  /\  k  e.  Prime )  ->  A  e.  ZZ )
61 prmz 12252 . . . . . . . . . . . . 13  |-  ( k  e.  Prime  ->  k  e.  ZZ )
6261adantl 277 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0 ) )  /\  k  e.  ( ZZ>= ` 
1 ) )  /\  k  e.  Prime )  -> 
k  e.  ZZ )
63 lgscl 15171 . . . . . . . . . . . 12  |-  ( ( A  e.  ZZ  /\  k  e.  ZZ )  ->  ( A  /L
k )  e.  ZZ )
6460, 62, 63syl2anc 411 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0 ) )  /\  k  e.  ( ZZ>= ` 
1 ) )  /\  k  e.  Prime )  -> 
( A  /L
k )  e.  ZZ )
6564zcnd 9443 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0 ) )  /\  k  e.  ( ZZ>= ` 
1 ) )  /\  k  e.  Prime )  -> 
( A  /L
k )  e.  CC )
66 pczcl 12439 . . . . . . . . . . 11  |-  ( ( k  e.  Prime  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( k  pCnt  N
)  e.  NN0 )
6752, 55, 56, 66syl12anc 1247 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0 ) )  /\  k  e.  ( ZZ>= ` 
1 ) )  /\  k  e.  Prime )  -> 
( k  pCnt  N
)  e.  NN0 )
68 pczcl 12439 . . . . . . . . . . 11  |-  ( ( k  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 ) )  -> 
( k  pCnt  M
)  e.  NN0 )
6952, 53, 54, 68syl12anc 1247 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0 ) )  /\  k  e.  ( ZZ>= ` 
1 ) )  /\  k  e.  Prime )  -> 
( k  pCnt  M
)  e.  NN0 )
7065, 67, 69expaddd 10749 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0 ) )  /\  k  e.  ( ZZ>= ` 
1 ) )  /\  k  e.  Prime )  -> 
( ( A  /L k ) ^
( ( k  pCnt  M )  +  ( k 
pCnt  N ) ) )  =  ( ( ( A  /L k ) ^ ( k 
pCnt  M ) )  x.  ( ( A  /L k ) ^
( k  pCnt  N
) ) ) )
7159, 70eqtrd 2226 . . . . . . . 8  |-  ( ( ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0 ) )  /\  k  e.  ( ZZ>= ` 
1 ) )  /\  k  e.  Prime )  -> 
( ( A  /L k ) ^
( k  pCnt  ( M  x.  N )
) )  =  ( ( ( A  /L k ) ^
( k  pCnt  M
) )  x.  (
( A  /L
k ) ^ (
k  pCnt  N )
) ) )
72 iftrue 3563 . . . . . . . . 9  |-  ( k  e.  Prime  ->  if ( k  e.  Prime ,  ( ( A  /L
k ) ^ (
k  pCnt  ( M  x.  N ) ) ) ,  1 )  =  ( ( A  /L k ) ^
( k  pCnt  ( M  x.  N )
) ) )
7372adantl 277 . . . . . . . 8  |-  ( ( ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0 ) )  /\  k  e.  ( ZZ>= ` 
1 ) )  /\  k  e.  Prime )  ->  if ( k  e.  Prime ,  ( ( A  /L k ) ^
( k  pCnt  ( M  x.  N )
) ) ,  1 )  =  ( ( A  /L k ) ^ ( k 
pCnt  ( M  x.  N ) ) ) )
74 iftrue 3563 . . . . . . . . . 10  |-  ( k  e.  Prime  ->  if ( k  e.  Prime ,  ( ( A  /L
k ) ^ (
k  pCnt  M )
) ,  1 )  =  ( ( A  /L k ) ^ ( k  pCnt  M ) ) )
75 iftrue 3563 . . . . . . . . . 10  |-  ( k  e.  Prime  ->  if ( k  e.  Prime ,  ( ( A  /L
k ) ^ (
k  pCnt  N )
) ,  1 )  =  ( ( A  /L k ) ^ ( k  pCnt  N ) ) )
7674, 75oveq12d 5937 . . . . . . . . 9  |-  ( k  e.  Prime  ->  ( if ( k  e.  Prime ,  ( ( A  /L k ) ^
( k  pCnt  M
) ) ,  1 )  x.  if ( k  e.  Prime ,  ( ( A  /L
k ) ^ (
k  pCnt  N )
) ,  1 ) )  =  ( ( ( A  /L
k ) ^ (
k  pCnt  M )
)  x.  ( ( A  /L k ) ^ ( k 
pCnt  N ) ) ) )
7776adantl 277 . . . . . . . 8  |-  ( ( ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0 ) )  /\  k  e.  ( ZZ>= ` 
1 ) )  /\  k  e.  Prime )  -> 
( if ( k  e.  Prime ,  ( ( A  /L k ) ^ ( k 
pCnt  M ) ) ,  1 )  x.  if ( k  e.  Prime ,  ( ( A  /L k ) ^
( k  pCnt  N
) ) ,  1 ) )  =  ( ( ( A  /L k ) ^
( k  pCnt  M
) )  x.  (
( A  /L
k ) ^ (
k  pCnt  N )
) ) )
7871, 73, 773eqtr4rd 2237 . . . . . . 7  |-  ( ( ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0 ) )  /\  k  e.  ( ZZ>= ` 
1 ) )  /\  k  e.  Prime )  -> 
( if ( k  e.  Prime ,  ( ( A  /L k ) ^ ( k 
pCnt  M ) ) ,  1 )  x.  if ( k  e.  Prime ,  ( ( A  /L k ) ^
( k  pCnt  N
) ) ,  1 ) )  =  if ( k  e.  Prime ,  ( ( A  /L k ) ^
( k  pCnt  ( M  x.  N )
) ) ,  1 ) )
79 1t1e1 9137 . . . . . . . . 9  |-  ( 1  x.  1 )  =  1
80 iffalse 3566 . . . . . . . . . 10  |-  ( -.  k  e.  Prime  ->  if ( k  e.  Prime ,  ( ( A  /L k ) ^
( k  pCnt  M
) ) ,  1 )  =  1 )
81 iffalse 3566 . . . . . . . . . 10  |-  ( -.  k  e.  Prime  ->  if ( k  e.  Prime ,  ( ( A  /L k ) ^
( k  pCnt  N
) ) ,  1 )  =  1 )
8280, 81oveq12d 5937 . . . . . . . . 9  |-  ( -.  k  e.  Prime  ->  ( if ( k  e. 
Prime ,  ( ( A  /L k ) ^ ( k  pCnt  M ) ) ,  1 )  x.  if ( k  e.  Prime ,  ( ( A  /L
k ) ^ (
k  pCnt  N )
) ,  1 ) )  =  ( 1  x.  1 ) )
83 iffalse 3566 . . . . . . . . 9  |-  ( -.  k  e.  Prime  ->  if ( k  e.  Prime ,  ( ( A  /L k ) ^
( k  pCnt  ( M  x.  N )
) ) ,  1 )  =  1 )
8479, 82, 833eqtr4a 2252 . . . . . . . 8  |-  ( -.  k  e.  Prime  ->  ( if ( k  e. 
Prime ,  ( ( A  /L k ) ^ ( k  pCnt  M ) ) ,  1 )  x.  if ( k  e.  Prime ,  ( ( A  /L
k ) ^ (
k  pCnt  N )
) ,  1 ) )  =  if ( k  e.  Prime ,  ( ( A  /L
k ) ^ (
k  pCnt  ( M  x.  N ) ) ) ,  1 ) )
8584adantl 277 . . . . . . 7  |-  ( ( ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0 ) )  /\  k  e.  ( ZZ>= ` 
1 ) )  /\  -.  k  e.  Prime )  ->  ( if ( k  e.  Prime ,  ( ( A  /L
k ) ^ (
k  pCnt  M )
) ,  1 )  x.  if ( k  e.  Prime ,  ( ( A  /L k ) ^ ( k 
pCnt  N ) ) ,  1 ) )  =  if ( k  e. 
Prime ,  ( ( A  /L k ) ^ ( k  pCnt  ( M  x.  N ) ) ) ,  1 ) )
86 prmdc 12271 . . . . . . . . . 10  |-  ( k  e.  NN  -> DECID  k  e.  Prime )
87 exmiddc 837 . . . . . . . . . 10  |-  (DECID  k  e. 
Prime  ->  ( k  e. 
Prime  \/  -.  k  e. 
Prime ) )
8886, 87syl 14 . . . . . . . . 9  |-  ( k  e.  NN  ->  (
k  e.  Prime  \/  -.  k  e.  Prime ) )
8942, 88syl 14 . . . . . . . 8  |-  ( k  e.  ( ZZ>= `  1
)  ->  ( k  e.  Prime  \/  -.  k  e.  Prime ) )
9089adantl 277 . . . . . . 7  |-  ( ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0 ) )  /\  k  e.  ( ZZ>= ` 
1 ) )  -> 
( k  e.  Prime  \/ 
-.  k  e.  Prime ) )
9178, 85, 90mpjaodan 799 . . . . . 6  |-  ( ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0 ) )  /\  k  e.  ( ZZ>= ` 
1 ) )  -> 
( if ( k  e.  Prime ,  ( ( A  /L k ) ^ ( k 
pCnt  M ) ) ,  1 )  x.  if ( k  e.  Prime ,  ( ( A  /L k ) ^
( k  pCnt  N
) ) ,  1 ) )  =  if ( k  e.  Prime ,  ( ( A  /L k ) ^
( k  pCnt  ( M  x.  N )
) ) ,  1 ) )
92 eleq1w 2254 . . . . . . . . 9  |-  ( n  =  k  ->  (
n  e.  Prime  <->  k  e.  Prime ) )
93 oveq2 5927 . . . . . . . . . 10  |-  ( n  =  k  ->  ( A  /L n )  =  ( A  /L k ) )
94 oveq1 5926 . . . . . . . . . 10  |-  ( n  =  k  ->  (
n  pCnt  M )  =  ( k  pCnt  M ) )
9593, 94oveq12d 5937 . . . . . . . . 9  |-  ( n  =  k  ->  (
( A  /L
n ) ^ (
n  pCnt  M )
)  =  ( ( A  /L k ) ^ ( k 
pCnt  M ) ) )
9692, 95ifbieq1d 3580 . . . . . . . 8  |-  ( n  =  k  ->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  M
) ) ,  1 )  =  if ( k  e.  Prime ,  ( ( A  /L
k ) ^ (
k  pCnt  M )
) ,  1 ) )
9742adantl 277 . . . . . . . 8  |-  ( ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0 ) )  /\  k  e.  ( ZZ>= ` 
1 ) )  -> 
k  e.  NN )
98 zexpcl 10628 . . . . . . . . . 10  |-  ( ( ( A  /L
k )  e.  ZZ  /\  ( k  pCnt  M
)  e.  NN0 )  ->  ( ( A  /L k ) ^
( k  pCnt  M
) )  e.  ZZ )
9964, 69, 98syl2anc 411 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0 ) )  /\  k  e.  ( ZZ>= ` 
1 ) )  /\  k  e.  Prime )  -> 
( ( A  /L k ) ^
( k  pCnt  M
) )  e.  ZZ )
100 1zzd 9347 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0 ) )  /\  k  e.  ( ZZ>= ` 
1 ) )  /\  -.  k  e.  Prime )  ->  1  e.  ZZ )
10197, 86syl 14 . . . . . . . . 9  |-  ( ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0 ) )  /\  k  e.  ( ZZ>= ` 
1 ) )  -> DECID  k  e.  Prime )
10299, 100, 101ifcldadc 3587 . . . . . . . 8  |-  ( ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0 ) )  /\  k  e.  ( ZZ>= ` 
1 ) )  ->  if ( k  e.  Prime ,  ( ( A  /L k ) ^
( k  pCnt  M
) ) ,  1 )  e.  ZZ )
10338, 96, 97, 102fvmptd3 5652 . . . . . . 7  |-  ( ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0 ) )  /\  k  e.  ( ZZ>= ` 
1 ) )  -> 
( ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^ ( n 
pCnt  M ) ) ,  1 ) ) `  k )  =  if ( k  e.  Prime ,  ( ( A  /L k ) ^
( k  pCnt  M
) ) ,  1 ) )
104 oveq1 5926 . . . . . . . . . 10  |-  ( n  =  k  ->  (
n  pCnt  N )  =  ( k  pCnt  N ) )
10593, 104oveq12d 5937 . . . . . . . . 9  |-  ( n  =  k  ->  (
( A  /L
n ) ^ (
n  pCnt  N )
)  =  ( ( A  /L k ) ^ ( k 
pCnt  N ) ) )
10692, 105ifbieq1d 3580 . . . . . . . 8  |-  ( n  =  k  ->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  N
) ) ,  1 )  =  if ( k  e.  Prime ,  ( ( A  /L
k ) ^ (
k  pCnt  N )
) ,  1 ) )
107 zexpcl 10628 . . . . . . . . . 10  |-  ( ( ( A  /L
k )  e.  ZZ  /\  ( k  pCnt  N
)  e.  NN0 )  ->  ( ( A  /L k ) ^
( k  pCnt  N
) )  e.  ZZ )
10864, 67, 107syl2anc 411 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0 ) )  /\  k  e.  ( ZZ>= ` 
1 ) )  /\  k  e.  Prime )  -> 
( ( A  /L k ) ^
( k  pCnt  N
) )  e.  ZZ )
109108, 100, 101ifcldadc 3587 . . . . . . . 8  |-  ( ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0 ) )  /\  k  e.  ( ZZ>= ` 
1 ) )  ->  if ( k  e.  Prime ,  ( ( A  /L k ) ^
( k  pCnt  N
) ) ,  1 )  e.  ZZ )
11046, 106, 97, 109fvmptd3 5652 . . . . . . 7  |-  ( ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0 ) )  /\  k  e.  ( ZZ>= ` 
1 ) )  -> 
( ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^ ( n 
pCnt  N ) ) ,  1 ) ) `  k )  =  if ( k  e.  Prime ,  ( ( A  /L k ) ^
( k  pCnt  N
) ) ,  1 ) )
111103, 110oveq12d 5937 . . . . . 6  |-  ( ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0 ) )  /\  k  e.  ( ZZ>= ` 
1 ) )  -> 
( ( ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L
n ) ^ (
n  pCnt  M )
) ,  1 ) ) `  k )  x.  ( ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L
n ) ^ (
n  pCnt  N )
) ,  1 ) ) `  k ) )  =  ( if ( k  e.  Prime ,  ( ( A  /L k ) ^
( k  pCnt  M
) ) ,  1 )  x.  if ( k  e.  Prime ,  ( ( A  /L
k ) ^ (
k  pCnt  N )
) ,  1 ) ) )
112 eqid 2193 . . . . . . 7  |-  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L
n ) ^ (
n  pCnt  ( M  x.  N ) ) ) ,  1 ) )  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^ ( n 
pCnt  ( M  x.  N ) ) ) ,  1 ) )
113 oveq1 5926 . . . . . . . . 9  |-  ( n  =  k  ->  (
n  pCnt  ( M  x.  N ) )  =  ( k  pCnt  ( M  x.  N )
) )
11493, 113oveq12d 5937 . . . . . . . 8  |-  ( n  =  k  ->  (
( A  /L
n ) ^ (
n  pCnt  ( M  x.  N ) ) )  =  ( ( A  /L k ) ^ ( k  pCnt  ( M  x.  N ) ) ) )
11592, 114ifbieq1d 3580 . . . . . . 7  |-  ( n  =  k  ->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  ( M  x.  N )
) ) ,  1 )  =  if ( k  e.  Prime ,  ( ( A  /L
k ) ^ (
k  pCnt  ( M  x.  N ) ) ) ,  1 ) )
11617ad2antrr 488 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0 ) )  /\  k  e.  ( ZZ>= ` 
1 ) )  /\  k  e.  Prime )  -> 
( M  x.  N
)  e.  ZZ )
11732ad2antrr 488 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0 ) )  /\  k  e.  ( ZZ>= ` 
1 ) )  /\  k  e.  Prime )  -> 
( M  x.  N
)  =/=  0 )
118 pczcl 12439 . . . . . . . . . 10  |-  ( ( k  e.  Prime  /\  (
( M  x.  N
)  e.  ZZ  /\  ( M  x.  N
)  =/=  0 ) )  ->  ( k  pCnt  ( M  x.  N
) )  e.  NN0 )
11952, 116, 117, 118syl12anc 1247 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0 ) )  /\  k  e.  ( ZZ>= ` 
1 ) )  /\  k  e.  Prime )  -> 
( k  pCnt  ( M  x.  N )
)  e.  NN0 )
120 zexpcl 10628 . . . . . . . . 9  |-  ( ( ( A  /L
k )  e.  ZZ  /\  ( k  pCnt  ( M  x.  N )
)  e.  NN0 )  ->  ( ( A  /L k ) ^
( k  pCnt  ( M  x.  N )
) )  e.  ZZ )
12164, 119, 120syl2anc 411 . . . . . . . 8  |-  ( ( ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0 ) )  /\  k  e.  ( ZZ>= ` 
1 ) )  /\  k  e.  Prime )  -> 
( ( A  /L k ) ^
( k  pCnt  ( M  x.  N )
) )  e.  ZZ )
122121, 100, 101ifcldadc 3587 . . . . . . 7  |-  ( ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0 ) )  /\  k  e.  ( ZZ>= ` 
1 ) )  ->  if ( k  e.  Prime ,  ( ( A  /L k ) ^
( k  pCnt  ( M  x.  N )
) ) ,  1 )  e.  ZZ )
123112, 115, 97, 122fvmptd3 5652 . . . . . 6  |-  ( ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0 ) )  /\  k  e.  ( ZZ>= ` 
1 ) )  -> 
( ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^ ( n 
pCnt  ( M  x.  N ) ) ) ,  1 ) ) `
 k )  =  if ( k  e. 
Prime ,  ( ( A  /L k ) ^ ( k  pCnt  ( M  x.  N ) ) ) ,  1 ) )
12491, 111, 1233eqtr4rd 2237 . . . . 5  |-  ( ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0 ) )  /\  k  e.  ( ZZ>= ` 
1 ) )  -> 
( ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^ ( n 
pCnt  ( M  x.  N ) ) ) ,  1 ) ) `
 k )  =  ( ( ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L
n ) ^ (
n  pCnt  M )
) ,  1 ) ) `  k )  x.  ( ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L
n ) ^ (
n  pCnt  N )
) ,  1 ) ) `  k ) ) )
12536, 45, 51, 124prod3fmul 11687 . . . 4  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  ->  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  ( M  x.  N )
) ) ,  1 ) ) ) `  ( abs `  ( M  x.  N ) ) )  =  ( (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^ ( n 
pCnt  M ) ) ,  1 ) ) ) `
 ( abs `  ( M  x.  N )
) )  x.  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) ) `  ( abs `  ( M  x.  N ) ) ) ) )
12637, 15, 16, 20, 25, 38lgsdilem2 15193 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  ->  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  M
) ) ,  1 ) ) ) `  ( abs `  M ) )  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  M
) ) ,  1 ) ) ) `  ( abs `  ( M  x.  N ) ) ) )
12737, 16, 15, 25, 20, 46lgsdilem2 15193 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  ->  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) ) `  ( abs `  N ) )  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) ) `  ( abs `  ( N  x.  M ) ) ) )
12818, 19mulcomd 8043 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  ->  ( M  x.  N )  =  ( N  x.  M ) )
129128fveq2d 5559 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  ->  ( abs `  ( M  x.  N ) )  =  ( abs `  ( N  x.  M )
) )
130129fveq2d 5559 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  ->  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) ) `  ( abs `  ( M  x.  N ) ) )  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) ) `  ( abs `  ( N  x.  M ) ) ) )
131127, 130eqtr4d 2229 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  ->  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) ) `  ( abs `  N ) )  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) ) `  ( abs `  ( M  x.  N ) ) ) )
132126, 131oveq12d 5937 . . . 4  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  ->  (
(  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^ ( n 
pCnt  M ) ) ,  1 ) ) ) `
 ( abs `  M
) )  x.  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) ) `  ( abs `  N ) ) )  =  ( (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L
n ) ^ (
n  pCnt  M )
) ,  1 ) ) ) `  ( abs `  ( M  x.  N ) ) )  x.  (  seq 1
(  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) ) `  ( abs `  ( M  x.  N ) ) ) ) )
133125, 132eqtr4d 2229 . . 3  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  ->  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  ( M  x.  N )
) ) ,  1 ) ) ) `  ( abs `  ( M  x.  N ) ) )  =  ( (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^ ( n 
pCnt  M ) ) ,  1 ) ) ) `
 ( abs `  M
) )  x.  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) ) `  ( abs `  N ) ) ) )
13414, 133oveq12d 5937 . 2  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  ->  ( if ( ( ( M  x.  N )  <  0  /\  A  <  0 ) ,  -u
1 ,  1 )  x.  (  seq 1
(  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  ( M  x.  N )
) ) ,  1 ) ) ) `  ( abs `  ( M  x.  N ) ) ) )  =  ( ( if ( ( M  <  0  /\  A  <  0 ) ,  -u 1 ,  1 )  x.  if ( ( N  <  0  /\  A  <  0
) ,  -u 1 ,  1 ) )  x.  ( (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  M
) ) ,  1 ) ) ) `  ( abs `  M ) )  x.  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) ) `  ( abs `  N ) ) ) ) )
135112lgsval4 15177 . . 3  |-  ( ( A  e.  ZZ  /\  ( M  x.  N
)  e.  ZZ  /\  ( M  x.  N
)  =/=  0 )  ->  ( A  /L ( M  x.  N ) )  =  ( if ( ( ( M  x.  N
)  <  0  /\  A  <  0 ) , 
-u 1 ,  1 )  x.  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  ( M  x.  N )
) ) ,  1 ) ) ) `  ( abs `  ( M  x.  N ) ) ) ) )
13637, 17, 32, 135syl3anc 1249 . 2  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  ->  ( A  /L ( M  x.  N ) )  =  ( if ( ( ( M  x.  N )  <  0  /\  A  <  0
) ,  -u 1 ,  1 )  x.  (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L
n ) ^ (
n  pCnt  ( M  x.  N ) ) ) ,  1 ) ) ) `  ( abs `  ( M  x.  N
) ) ) ) )
13738lgsval4 15177 . . . . 5  |-  ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  M  =/=  0 )  ->  ( A  /L M )  =  ( if ( ( M  <  0  /\  A  <  0
) ,  -u 1 ,  1 )  x.  (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L
n ) ^ (
n  pCnt  M )
) ,  1 ) ) ) `  ( abs `  M ) ) ) )
13837, 15, 20, 137syl3anc 1249 . . . 4  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  ->  ( A  /L M )  =  ( if ( ( M  <  0  /\  A  <  0
) ,  -u 1 ,  1 )  x.  (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L
n ) ^ (
n  pCnt  M )
) ,  1 ) ) ) `  ( abs `  M ) ) ) )
13946lgsval4 15177 . . . . 5  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  ( A  /L N )  =  ( if ( ( N  <  0  /\  A  <  0
) ,  -u 1 ,  1 )  x.  (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L
n ) ^ (
n  pCnt  N )
) ,  1 ) ) ) `  ( abs `  N ) ) ) )
14037, 16, 25, 139syl3anc 1249 . . . 4  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  ->  ( A  /L N )  =  ( if ( ( N  <  0  /\  A  <  0
) ,  -u 1 ,  1 )  x.  (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L
n ) ^ (
n  pCnt  N )
) ,  1 ) ) ) `  ( abs `  N ) ) ) )
141138, 140oveq12d 5937 . . 3  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  ->  (
( A  /L
M )  x.  ( A  /L N ) )  =  ( ( if ( ( M  <  0  /\  A  <  0 ) ,  -u
1 ,  1 )  x.  (  seq 1
(  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  M
) ) ,  1 ) ) ) `  ( abs `  M ) ) )  x.  ( if ( ( N  <  0  /\  A  <  0 ) ,  -u
1 ,  1 )  x.  (  seq 1
(  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) ) `  ( abs `  N ) ) ) ) )
142 neg1z 9352 . . . . . . 7  |-  -u 1  e.  ZZ
143142a1i 9 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  ->  -u 1  e.  ZZ )
144 1zzd 9347 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  ->  1  e.  ZZ )
145 zdclt 9397 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  0  e.  ZZ )  -> DECID  M  <  0 )
14615, 21, 145sylancl 413 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  -> DECID  M  <  0
)
147 zdclt 9397 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  0  e.  ZZ )  -> DECID  A  <  0 )
14837, 21, 147sylancl 413 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  -> DECID  A  <  0
)
149 dcan2 936 . . . . . . 7  |-  (DECID  M  <  0  ->  (DECID  A  <  0  -> DECID 
( M  <  0  /\  A  <  0
) ) )
150146, 148, 149sylc 62 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  -> DECID  ( M  <  0  /\  A  <  0
) )
151143, 144, 150ifcldcd 3594 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  ->  if ( ( M  <  0  /\  A  <  0 ) ,  -u
1 ,  1 )  e.  ZZ )
152151zcnd 9443 . . . 4  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  ->  if ( ( M  <  0  /\  A  <  0 ) ,  -u
1 ,  1 )  e.  CC )
15340ffvelcdmda 5694 . . . . . . 7  |-  ( ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0 ) )  /\  k  e.  NN )  ->  ( ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^ ( n 
pCnt  M ) ) ,  1 ) ) `  k )  e.  ZZ )
154 zmulcl 9373 . . . . . . . 8  |-  ( ( k  e.  ZZ  /\  v  e.  ZZ )  ->  ( k  x.  v
)  e.  ZZ )
155154adantl 277 . . . . . . 7  |-  ( ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0 ) )  /\  ( k  e.  ZZ  /\  v  e.  ZZ ) )  ->  ( k  x.  v )  e.  ZZ )
15635, 144, 153, 155seqf 10538 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  ->  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  M
) ) ,  1 ) ) ) : NN --> ZZ )
157 nnabscl 11247 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  M  =/=  0 )  -> 
( abs `  M
)  e.  NN )
15815, 20, 157syl2anc 411 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  ->  ( abs `  M )  e.  NN )
159156, 158ffvelcdmd 5695 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  ->  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  M
) ) ,  1 ) ) ) `  ( abs `  M ) )  e.  ZZ )
160159zcnd 9443 . . . 4  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  ->  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  M
) ) ,  1 ) ) ) `  ( abs `  M ) )  e.  CC )
161 zdclt 9397 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  0  e.  ZZ )  -> DECID  N  <  0 )
16216, 21, 161sylancl 413 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  -> DECID  N  <  0
)
163 dcan2 936 . . . . . . 7  |-  (DECID  N  <  0  ->  (DECID  A  <  0  -> DECID 
( N  <  0  /\  A  <  0
) ) )
164162, 148, 163sylc 62 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  -> DECID  ( N  <  0  /\  A  <  0
) )
165143, 144, 164ifcldcd 3594 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  ->  if ( ( N  <  0  /\  A  <  0 ) ,  -u
1 ,  1 )  e.  ZZ )
166165zcnd 9443 . . . 4  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  ->  if ( ( N  <  0  /\  A  <  0 ) ,  -u
1 ,  1 )  e.  CC )
16748ffvelcdmda 5694 . . . . . . 7  |-  ( ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0 ) )  /\  k  e.  NN )  ->  ( ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^ ( n 
pCnt  N ) ) ,  1 ) ) `  k )  e.  ZZ )
16835, 144, 167, 155seqf 10538 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  ->  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) ) : NN --> ZZ )
169 nnabscl 11247 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  N  =/=  0 )  -> 
( abs `  N
)  e.  NN )
17016, 25, 169syl2anc 411 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  ->  ( abs `  N )  e.  NN )
171168, 170ffvelcdmd 5695 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  ->  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) ) `  ( abs `  N ) )  e.  ZZ )
172171zcnd 9443 . . . 4  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  ->  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) ) `  ( abs `  N ) )  e.  CC )
173152, 160, 166, 172mul4d 8176 . . 3  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  ->  (
( if ( ( M  <  0  /\  A  <  0 ) ,  -u 1 ,  1 )  x.  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  M
) ) ,  1 ) ) ) `  ( abs `  M ) ) )  x.  ( if ( ( N  <  0  /\  A  <  0 ) ,  -u
1 ,  1 )  x.  (  seq 1
(  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) ) `  ( abs `  N ) ) ) )  =  ( ( if ( ( M  <  0  /\  A  <  0
) ,  -u 1 ,  1 )  x.  if ( ( N  <  0  /\  A  <  0 ) ,  -u
1 ,  1 ) )  x.  ( (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^ ( n 
pCnt  M ) ) ,  1 ) ) ) `
 ( abs `  M
) )  x.  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) ) `  ( abs `  N ) ) ) ) )
174141, 173eqtrd 2226 . 2  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  ->  (
( A  /L
M )  x.  ( A  /L N ) )  =  ( ( if ( ( M  <  0  /\  A  <  0 ) ,  -u
1 ,  1 )  x.  if ( ( N  <  0  /\  A  <  0 ) ,  -u 1 ,  1 ) )  x.  (
(  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^ ( n 
pCnt  M ) ) ,  1 ) ) ) `
 ( abs `  M
) )  x.  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) ) `  ( abs `  N ) ) ) ) )
175134, 136, 1743eqtr4d 2236 1  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  ->  ( A  /L ( M  x.  N ) )  =  ( ( A  /L M )  x.  ( A  /L N ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709  DECID wdc 835    /\ w3a 980    = wceq 1364    e. wcel 2164    =/= wne 2364   ifcif 3558   class class class wbr 4030    |-> cmpt 4091   -->wf 5251   ` cfv 5255  (class class class)co 5919   0cc0 7874   1c1 7875    + caddc 7877    x. cmul 7879    < clt 8056   -ucneg 8193   # cap 8602   NNcn 8984   NN0cn0 9243   ZZcz 9320   ZZ>=cuz 9595    seqcseq 10521   ^cexp 10612   abscabs 11144   Primecprime 12248    pCnt cpc 12425    /Lclgs 15154
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-mulrcl 7973  ax-addcom 7974  ax-mulcom 7975  ax-addass 7976  ax-mulass 7977  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-1rid 7981  ax-0id 7982  ax-rnegex 7983  ax-precex 7984  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990  ax-pre-mulgt0 7991  ax-pre-mulext 7992  ax-arch 7993  ax-caucvg 7994
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-xor 1387  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-po 4328  df-iso 4329  df-iord 4398  df-on 4400  df-ilim 4401  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-irdg 6425  df-frec 6446  df-1o 6471  df-2o 6472  df-oadd 6475  df-er 6589  df-en 6797  df-dom 6798  df-fin 6799  df-sup 7045  df-inf 7046  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-reap 8596  df-ap 8603  df-div 8694  df-inn 8985  df-2 9043  df-3 9044  df-4 9045  df-5 9046  df-6 9047  df-7 9048  df-8 9049  df-n0 9244  df-z 9321  df-uz 9596  df-q 9688  df-rp 9723  df-fz 10078  df-fzo 10212  df-fl 10342  df-mod 10397  df-seqfrec 10522  df-exp 10613  df-ihash 10850  df-cj 10989  df-re 10990  df-im 10991  df-rsqrt 11145  df-abs 11146  df-clim 11425  df-proddc 11697  df-dvds 11934  df-gcd 12083  df-prm 12249  df-phi 12352  df-pc 12426  df-lgs 15155
This theorem is referenced by:  lgssq2  15198  lgsdinn0  15205  lgsquad2lem1  15238
  Copyright terms: Public domain W3C validator