Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > lgsdi | Unicode version |
Description: The Legendre symbol is completely multiplicative in its right argument. Generalization of theorem 9.9(b) in [ApostolNT] p. 188 (which assumes that and are odd positive integers). (Contributed by Mario Carneiro, 5-Feb-2015.) |
Ref | Expression |
---|---|
lgsdi |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3anrot 978 | . . . . 5 | |
2 | lgsdilem 13683 | . . . . 5 | |
3 | 1, 2 | sylanb 282 | . . . 4 |
4 | ancom 264 | . . . . 5 | |
5 | ifbi 3545 | . . . . 5 | |
6 | 4, 5 | ax-mp 5 | . . . 4 |
7 | ancom 264 | . . . . . 6 | |
8 | ifbi 3545 | . . . . . 6 | |
9 | 7, 8 | ax-mp 5 | . . . . 5 |
10 | ancom 264 | . . . . . 6 | |
11 | ifbi 3545 | . . . . . 6 | |
12 | 10, 11 | ax-mp 5 | . . . . 5 |
13 | 9, 12 | oveq12i 5863 | . . . 4 |
14 | 3, 6, 13 | 3eqtr4g 2228 | . . 3 |
15 | simpl2 996 | . . . . . . . 8 | |
16 | simpl3 997 | . . . . . . . 8 | |
17 | 15, 16 | zmulcld 9329 | . . . . . . 7 |
18 | 15 | zcnd 9324 | . . . . . . . . 9 |
19 | 16 | zcnd 9324 | . . . . . . . . 9 |
20 | simprl 526 | . . . . . . . . . 10 | |
21 | 0z 9212 | . . . . . . . . . . 11 | |
22 | zapne 9275 | . . . . . . . . . . 11 # | |
23 | 15, 21, 22 | sylancl 411 | . . . . . . . . . 10 # |
24 | 20, 23 | mpbird 166 | . . . . . . . . 9 # |
25 | simprr 527 | . . . . . . . . . 10 | |
26 | zapne 9275 | . . . . . . . . . . 11 # | |
27 | 16, 21, 26 | sylancl 411 | . . . . . . . . . 10 # |
28 | 25, 27 | mpbird 166 | . . . . . . . . 9 # |
29 | 18, 19, 24, 28 | mulap0d 8565 | . . . . . . . 8 # |
30 | zapne 9275 | . . . . . . . . 9 # | |
31 | 17, 21, 30 | sylancl 411 | . . . . . . . 8 # |
32 | 29, 31 | mpbid 146 | . . . . . . 7 |
33 | nnabscl 11053 | . . . . . . 7 | |
34 | 17, 32, 33 | syl2anc 409 | . . . . . 6 |
35 | nnuz 9511 | . . . . . 6 | |
36 | 34, 35 | eleqtrdi 2263 | . . . . 5 |
37 | simpl1 995 | . . . . . . . 8 | |
38 | eqid 2170 | . . . . . . . . 9 | |
39 | 38 | lgsfcl3 13677 | . . . . . . . 8 |
40 | 37, 15, 20, 39 | syl3anc 1233 | . . . . . . 7 |
41 | elnnuz 9512 | . . . . . . . 8 | |
42 | 41 | biimpri 132 | . . . . . . 7 |
43 | ffvelrn 5627 | . . . . . . 7 | |
44 | 40, 42, 43 | syl2an 287 | . . . . . 6 |
45 | 44 | zcnd 9324 | . . . . 5 |
46 | eqid 2170 | . . . . . . . . 9 | |
47 | 46 | lgsfcl3 13677 | . . . . . . . 8 |
48 | 37, 16, 25, 47 | syl3anc 1233 | . . . . . . 7 |
49 | ffvelrn 5627 | . . . . . . 7 | |
50 | 48, 42, 49 | syl2an 287 | . . . . . 6 |
51 | 50 | zcnd 9324 | . . . . 5 |
52 | simpr 109 | . . . . . . . . . . 11 | |
53 | 15 | ad2antrr 485 | . . . . . . . . . . 11 |
54 | 20 | ad2antrr 485 | . . . . . . . . . . 11 |
55 | 16 | ad2antrr 485 | . . . . . . . . . . 11 |
56 | 25 | ad2antrr 485 | . . . . . . . . . . 11 |
57 | pcmul 12244 | . . . . . . . . . . 11 | |
58 | 52, 53, 54, 55, 56, 57 | syl122anc 1242 | . . . . . . . . . 10 |
59 | 58 | oveq2d 5867 | . . . . . . . . 9 |
60 | 37 | ad2antrr 485 | . . . . . . . . . . . 12 |
61 | prmz 12054 | . . . . . . . . . . . . 13 | |
62 | 61 | adantl 275 | . . . . . . . . . . . 12 |
63 | lgscl 13670 | . . . . . . . . . . . 12 | |
64 | 60, 62, 63 | syl2anc 409 | . . . . . . . . . . 11 |
65 | 64 | zcnd 9324 | . . . . . . . . . 10 |
66 | pczcl 12241 | . . . . . . . . . . 11 | |
67 | 52, 55, 56, 66 | syl12anc 1231 | . . . . . . . . . 10 |
68 | pczcl 12241 | . . . . . . . . . . 11 | |
69 | 52, 53, 54, 68 | syl12anc 1231 | . . . . . . . . . 10 |
70 | 65, 67, 69 | expaddd 10600 | . . . . . . . . 9 |
71 | 59, 70 | eqtrd 2203 | . . . . . . . 8 |
72 | iftrue 3530 | . . . . . . . . 9 | |
73 | 72 | adantl 275 | . . . . . . . 8 |
74 | iftrue 3530 | . . . . . . . . . 10 | |
75 | iftrue 3530 | . . . . . . . . . 10 | |
76 | 74, 75 | oveq12d 5869 | . . . . . . . . 9 |
77 | 76 | adantl 275 | . . . . . . . 8 |
78 | 71, 73, 77 | 3eqtr4rd 2214 | . . . . . . 7 |
79 | 1t1e1 9019 | . . . . . . . . 9 | |
80 | iffalse 3533 | . . . . . . . . . 10 | |
81 | iffalse 3533 | . . . . . . . . . 10 | |
82 | 80, 81 | oveq12d 5869 | . . . . . . . . 9 |
83 | iffalse 3533 | . . . . . . . . 9 | |
84 | 79, 82, 83 | 3eqtr4a 2229 | . . . . . . . 8 |
85 | 84 | adantl 275 | . . . . . . 7 |
86 | prmdc 12073 | . . . . . . . . . 10 DECID | |
87 | exmiddc 831 | . . . . . . . . . 10 DECID | |
88 | 86, 87 | syl 14 | . . . . . . . . 9 |
89 | 42, 88 | syl 14 | . . . . . . . 8 |
90 | 89 | adantl 275 | . . . . . . 7 |
91 | 78, 85, 90 | mpjaodan 793 | . . . . . 6 |
92 | eleq1w 2231 | . . . . . . . . 9 | |
93 | oveq2 5859 | . . . . . . . . . 10 | |
94 | oveq1 5858 | . . . . . . . . . 10 | |
95 | 93, 94 | oveq12d 5869 | . . . . . . . . 9 |
96 | 92, 95 | ifbieq1d 3547 | . . . . . . . 8 |
97 | 42 | adantl 275 | . . . . . . . 8 |
98 | zexpcl 10480 | . . . . . . . . . 10 | |
99 | 64, 69, 98 | syl2anc 409 | . . . . . . . . 9 |
100 | 1zzd 9228 | . . . . . . . . 9 | |
101 | 97, 86 | syl 14 | . . . . . . . . 9 DECID |
102 | 99, 100, 101 | ifcldadc 3554 | . . . . . . . 8 |
103 | 38, 96, 97, 102 | fvmptd3 5587 | . . . . . . 7 |
104 | oveq1 5858 | . . . . . . . . . 10 | |
105 | 93, 104 | oveq12d 5869 | . . . . . . . . 9 |
106 | 92, 105 | ifbieq1d 3547 | . . . . . . . 8 |
107 | zexpcl 10480 | . . . . . . . . . 10 | |
108 | 64, 67, 107 | syl2anc 409 | . . . . . . . . 9 |
109 | 108, 100, 101 | ifcldadc 3554 | . . . . . . . 8 |
110 | 46, 106, 97, 109 | fvmptd3 5587 | . . . . . . 7 |
111 | 103, 110 | oveq12d 5869 | . . . . . 6 |
112 | eqid 2170 | . . . . . . 7 | |
113 | oveq1 5858 | . . . . . . . . 9 | |
114 | 93, 113 | oveq12d 5869 | . . . . . . . 8 |
115 | 92, 114 | ifbieq1d 3547 | . . . . . . 7 |
116 | 17 | ad2antrr 485 | . . . . . . . . . 10 |
117 | 32 | ad2antrr 485 | . . . . . . . . . 10 |
118 | pczcl 12241 | . . . . . . . . . 10 | |
119 | 52, 116, 117, 118 | syl12anc 1231 | . . . . . . . . 9 |
120 | zexpcl 10480 | . . . . . . . . 9 | |
121 | 64, 119, 120 | syl2anc 409 | . . . . . . . 8 |
122 | 121, 100, 101 | ifcldadc 3554 | . . . . . . 7 |
123 | 112, 115, 97, 122 | fvmptd3 5587 | . . . . . 6 |
124 | 91, 111, 123 | 3eqtr4rd 2214 | . . . . 5 |
125 | 36, 45, 51, 124 | prod3fmul 11493 | . . . 4 |
126 | 37, 15, 16, 20, 25, 38 | lgsdilem2 13692 | . . . . 5 |
127 | 37, 16, 15, 25, 20, 46 | lgsdilem2 13692 | . . . . . 6 |
128 | 18, 19 | mulcomd 7930 | . . . . . . . 8 |
129 | 128 | fveq2d 5498 | . . . . . . 7 |
130 | 129 | fveq2d 5498 | . . . . . 6 |
131 | 127, 130 | eqtr4d 2206 | . . . . 5 |
132 | 126, 131 | oveq12d 5869 | . . . 4 |
133 | 125, 132 | eqtr4d 2206 | . . 3 |
134 | 14, 133 | oveq12d 5869 | . 2 |
135 | 112 | lgsval4 13676 | . . 3 |
136 | 37, 17, 32, 135 | syl3anc 1233 | . 2 |
137 | 38 | lgsval4 13676 | . . . . 5 |
138 | 37, 15, 20, 137 | syl3anc 1233 | . . . 4 |
139 | 46 | lgsval4 13676 | . . . . 5 |
140 | 37, 16, 25, 139 | syl3anc 1233 | . . . 4 |
141 | 138, 140 | oveq12d 5869 | . . 3 |
142 | neg1z 9233 | . . . . . . 7 | |
143 | 142 | a1i 9 | . . . . . 6 |
144 | 1zzd 9228 | . . . . . 6 | |
145 | zdclt 9278 | . . . . . . . 8 DECID | |
146 | 15, 21, 145 | sylancl 411 | . . . . . . 7 DECID |
147 | zdclt 9278 | . . . . . . . 8 DECID | |
148 | 37, 21, 147 | sylancl 411 | . . . . . . 7 DECID |
149 | dcan2 929 | . . . . . . 7 DECID DECID DECID | |
150 | 146, 148, 149 | sylc 62 | . . . . . 6 DECID |
151 | 143, 144, 150 | ifcldcd 3560 | . . . . 5 |
152 | 151 | zcnd 9324 | . . . 4 |
153 | 40 | ffvelrnda 5629 | . . . . . . 7 |
154 | zmulcl 9254 | . . . . . . . 8 | |
155 | 154 | adantl 275 | . . . . . . 7 |
156 | 35, 144, 153, 155 | seqf 10406 | . . . . . 6 |
157 | nnabscl 11053 | . . . . . . 7 | |
158 | 15, 20, 157 | syl2anc 409 | . . . . . 6 |
159 | 156, 158 | ffvelrnd 5630 | . . . . 5 |
160 | 159 | zcnd 9324 | . . . 4 |
161 | zdclt 9278 | . . . . . . . 8 DECID | |
162 | 16, 21, 161 | sylancl 411 | . . . . . . 7 DECID |
163 | dcan2 929 | . . . . . . 7 DECID DECID DECID | |
164 | 162, 148, 163 | sylc 62 | . . . . . 6 DECID |
165 | 143, 144, 164 | ifcldcd 3560 | . . . . 5 |
166 | 165 | zcnd 9324 | . . . 4 |
167 | 48 | ffvelrnda 5629 | . . . . . . 7 |
168 | 35, 144, 167, 155 | seqf 10406 | . . . . . 6 |
169 | nnabscl 11053 | . . . . . . 7 | |
170 | 16, 25, 169 | syl2anc 409 | . . . . . 6 |
171 | 168, 170 | ffvelrnd 5630 | . . . . 5 |
172 | 171 | zcnd 9324 | . . . 4 |
173 | 152, 160, 166, 172 | mul4d 8063 | . . 3 |
174 | 141, 173 | eqtrd 2203 | . 2 |
175 | 134, 136, 174 | 3eqtr4d 2213 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wo 703 DECID wdc 829 w3a 973 wceq 1348 wcel 2141 wne 2340 cif 3525 class class class wbr 3987 cmpt 4048 wf 5192 cfv 5196 (class class class)co 5851 cc0 7763 c1 7764 caddc 7766 cmul 7768 clt 7943 cneg 8080 # cap 8489 cn 8867 cn0 9124 cz 9201 cuz 9476 cseq 10390 cexp 10464 cabs 10950 cprime 12050 cpc 12227 clgs 13653 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4102 ax-sep 4105 ax-nul 4113 ax-pow 4158 ax-pr 4192 ax-un 4416 ax-setind 4519 ax-iinf 4570 ax-cnex 7854 ax-resscn 7855 ax-1cn 7856 ax-1re 7857 ax-icn 7858 ax-addcl 7859 ax-addrcl 7860 ax-mulcl 7861 ax-mulrcl 7862 ax-addcom 7863 ax-mulcom 7864 ax-addass 7865 ax-mulass 7866 ax-distr 7867 ax-i2m1 7868 ax-0lt1 7869 ax-1rid 7870 ax-0id 7871 ax-rnegex 7872 ax-precex 7873 ax-cnre 7874 ax-pre-ltirr 7875 ax-pre-ltwlin 7876 ax-pre-lttrn 7877 ax-pre-apti 7878 ax-pre-ltadd 7879 ax-pre-mulgt0 7880 ax-pre-mulext 7881 ax-arch 7882 ax-caucvg 7883 |
This theorem depends on definitions: df-bi 116 df-stab 826 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-xor 1371 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-if 3526 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-int 3830 df-iun 3873 df-br 3988 df-opab 4049 df-mpt 4050 df-tr 4086 df-id 4276 df-po 4279 df-iso 4280 df-iord 4349 df-on 4351 df-ilim 4352 df-suc 4354 df-iom 4573 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-rn 4620 df-res 4621 df-ima 4622 df-iota 5158 df-fun 5198 df-fn 5199 df-f 5200 df-f1 5201 df-fo 5202 df-f1o 5203 df-fv 5204 df-isom 5205 df-riota 5807 df-ov 5854 df-oprab 5855 df-mpo 5856 df-1st 6117 df-2nd 6118 df-recs 6282 df-irdg 6347 df-frec 6368 df-1o 6393 df-2o 6394 df-oadd 6397 df-er 6510 df-en 6716 df-dom 6717 df-fin 6718 df-sup 6958 df-inf 6959 df-pnf 7945 df-mnf 7946 df-xr 7947 df-ltxr 7948 df-le 7949 df-sub 8081 df-neg 8082 df-reap 8483 df-ap 8490 df-div 8579 df-inn 8868 df-2 8926 df-3 8927 df-4 8928 df-5 8929 df-6 8930 df-7 8931 df-8 8932 df-n0 9125 df-z 9202 df-uz 9477 df-q 9568 df-rp 9600 df-fz 9955 df-fzo 10088 df-fl 10215 df-mod 10268 df-seqfrec 10391 df-exp 10465 df-ihash 10699 df-cj 10795 df-re 10796 df-im 10797 df-rsqrt 10951 df-abs 10952 df-clim 11231 df-proddc 11503 df-dvds 11739 df-gcd 11887 df-prm 12051 df-phi 12154 df-pc 12228 df-lgs 13654 |
This theorem is referenced by: lgssq2 13697 lgsdinn0 13704 |
Copyright terms: Public domain | W3C validator |