| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lgsdi | Unicode version | ||
| Description: The Legendre symbol is
completely multiplicative in its right
argument. Generalization of theorem 9.9(b) in [ApostolNT] p. 188
(which assumes that |
| Ref | Expression |
|---|---|
| lgsdi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3anrot 986 |
. . . . 5
| |
| 2 | lgsdilem 15619 |
. . . . 5
| |
| 3 | 1, 2 | sylanb 284 |
. . . 4
|
| 4 | ancom 266 |
. . . . 5
| |
| 5 | ifbi 3600 |
. . . . 5
| |
| 6 | 4, 5 | ax-mp 5 |
. . . 4
|
| 7 | ancom 266 |
. . . . . 6
| |
| 8 | ifbi 3600 |
. . . . . 6
| |
| 9 | 7, 8 | ax-mp 5 |
. . . . 5
|
| 10 | ancom 266 |
. . . . . 6
| |
| 11 | ifbi 3600 |
. . . . . 6
| |
| 12 | 10, 11 | ax-mp 5 |
. . . . 5
|
| 13 | 9, 12 | oveq12i 5979 |
. . . 4
|
| 14 | 3, 6, 13 | 3eqtr4g 2265 |
. . 3
|
| 15 | simpl2 1004 |
. . . . . . . 8
| |
| 16 | simpl3 1005 |
. . . . . . . 8
| |
| 17 | 15, 16 | zmulcld 9536 |
. . . . . . 7
|
| 18 | 15 | zcnd 9531 |
. . . . . . . . 9
|
| 19 | 16 | zcnd 9531 |
. . . . . . . . 9
|
| 20 | simprl 529 |
. . . . . . . . . 10
| |
| 21 | 0z 9418 |
. . . . . . . . . . 11
| |
| 22 | zapne 9482 |
. . . . . . . . . . 11
| |
| 23 | 15, 21, 22 | sylancl 413 |
. . . . . . . . . 10
|
| 24 | 20, 23 | mpbird 167 |
. . . . . . . . 9
|
| 25 | simprr 531 |
. . . . . . . . . 10
| |
| 26 | zapne 9482 |
. . . . . . . . . . 11
| |
| 27 | 16, 21, 26 | sylancl 413 |
. . . . . . . . . 10
|
| 28 | 25, 27 | mpbird 167 |
. . . . . . . . 9
|
| 29 | 18, 19, 24, 28 | mulap0d 8766 |
. . . . . . . 8
|
| 30 | zapne 9482 |
. . . . . . . . 9
| |
| 31 | 17, 21, 30 | sylancl 413 |
. . . . . . . 8
|
| 32 | 29, 31 | mpbid 147 |
. . . . . . 7
|
| 33 | nnabscl 11526 |
. . . . . . 7
| |
| 34 | 17, 32, 33 | syl2anc 411 |
. . . . . 6
|
| 35 | nnuz 9719 |
. . . . . 6
| |
| 36 | 34, 35 | eleqtrdi 2300 |
. . . . 5
|
| 37 | simpl1 1003 |
. . . . . . . 8
| |
| 38 | eqid 2207 |
. . . . . . . . 9
| |
| 39 | 38 | lgsfcl3 15613 |
. . . . . . . 8
|
| 40 | 37, 15, 20, 39 | syl3anc 1250 |
. . . . . . 7
|
| 41 | elnnuz 9720 |
. . . . . . . 8
| |
| 42 | 41 | biimpri 133 |
. . . . . . 7
|
| 43 | ffvelcdm 5736 |
. . . . . . 7
| |
| 44 | 40, 42, 43 | syl2an 289 |
. . . . . 6
|
| 45 | 44 | zcnd 9531 |
. . . . 5
|
| 46 | eqid 2207 |
. . . . . . . . 9
| |
| 47 | 46 | lgsfcl3 15613 |
. . . . . . . 8
|
| 48 | 37, 16, 25, 47 | syl3anc 1250 |
. . . . . . 7
|
| 49 | ffvelcdm 5736 |
. . . . . . 7
| |
| 50 | 48, 42, 49 | syl2an 289 |
. . . . . 6
|
| 51 | 50 | zcnd 9531 |
. . . . 5
|
| 52 | simpr 110 |
. . . . . . . . . . 11
| |
| 53 | 15 | ad2antrr 488 |
. . . . . . . . . . 11
|
| 54 | 20 | ad2antrr 488 |
. . . . . . . . . . 11
|
| 55 | 16 | ad2antrr 488 |
. . . . . . . . . . 11
|
| 56 | 25 | ad2antrr 488 |
. . . . . . . . . . 11
|
| 57 | pcmul 12739 |
. . . . . . . . . . 11
| |
| 58 | 52, 53, 54, 55, 56, 57 | syl122anc 1259 |
. . . . . . . . . 10
|
| 59 | 58 | oveq2d 5983 |
. . . . . . . . 9
|
| 60 | 37 | ad2antrr 488 |
. . . . . . . . . . . 12
|
| 61 | prmz 12548 |
. . . . . . . . . . . . 13
| |
| 62 | 61 | adantl 277 |
. . . . . . . . . . . 12
|
| 63 | lgscl 15606 |
. . . . . . . . . . . 12
| |
| 64 | 60, 62, 63 | syl2anc 411 |
. . . . . . . . . . 11
|
| 65 | 64 | zcnd 9531 |
. . . . . . . . . 10
|
| 66 | pczcl 12736 |
. . . . . . . . . . 11
| |
| 67 | 52, 55, 56, 66 | syl12anc 1248 |
. . . . . . . . . 10
|
| 68 | pczcl 12736 |
. . . . . . . . . . 11
| |
| 69 | 52, 53, 54, 68 | syl12anc 1248 |
. . . . . . . . . 10
|
| 70 | 65, 67, 69 | expaddd 10857 |
. . . . . . . . 9
|
| 71 | 59, 70 | eqtrd 2240 |
. . . . . . . 8
|
| 72 | iftrue 3584 |
. . . . . . . . 9
| |
| 73 | 72 | adantl 277 |
. . . . . . . 8
|
| 74 | iftrue 3584 |
. . . . . . . . . 10
| |
| 75 | iftrue 3584 |
. . . . . . . . . 10
| |
| 76 | 74, 75 | oveq12d 5985 |
. . . . . . . . 9
|
| 77 | 76 | adantl 277 |
. . . . . . . 8
|
| 78 | 71, 73, 77 | 3eqtr4rd 2251 |
. . . . . . 7
|
| 79 | 1t1e1 9224 |
. . . . . . . . 9
| |
| 80 | iffalse 3587 |
. . . . . . . . . 10
| |
| 81 | iffalse 3587 |
. . . . . . . . . 10
| |
| 82 | 80, 81 | oveq12d 5985 |
. . . . . . . . 9
|
| 83 | iffalse 3587 |
. . . . . . . . 9
| |
| 84 | 79, 82, 83 | 3eqtr4a 2266 |
. . . . . . . 8
|
| 85 | 84 | adantl 277 |
. . . . . . 7
|
| 86 | prmdc 12567 |
. . . . . . . . . 10
| |
| 87 | exmiddc 838 |
. . . . . . . . . 10
| |
| 88 | 86, 87 | syl 14 |
. . . . . . . . 9
|
| 89 | 42, 88 | syl 14 |
. . . . . . . 8
|
| 90 | 89 | adantl 277 |
. . . . . . 7
|
| 91 | 78, 85, 90 | mpjaodan 800 |
. . . . . 6
|
| 92 | eleq1w 2268 |
. . . . . . . . 9
| |
| 93 | oveq2 5975 |
. . . . . . . . . 10
| |
| 94 | oveq1 5974 |
. . . . . . . . . 10
| |
| 95 | 93, 94 | oveq12d 5985 |
. . . . . . . . 9
|
| 96 | 92, 95 | ifbieq1d 3602 |
. . . . . . . 8
|
| 97 | 42 | adantl 277 |
. . . . . . . 8
|
| 98 | zexpcl 10736 |
. . . . . . . . . 10
| |
| 99 | 64, 69, 98 | syl2anc 411 |
. . . . . . . . 9
|
| 100 | 1zzd 9434 |
. . . . . . . . 9
| |
| 101 | 97, 86 | syl 14 |
. . . . . . . . 9
|
| 102 | 99, 100, 101 | ifcldadc 3609 |
. . . . . . . 8
|
| 103 | 38, 96, 97, 102 | fvmptd3 5696 |
. . . . . . 7
|
| 104 | oveq1 5974 |
. . . . . . . . . 10
| |
| 105 | 93, 104 | oveq12d 5985 |
. . . . . . . . 9
|
| 106 | 92, 105 | ifbieq1d 3602 |
. . . . . . . 8
|
| 107 | zexpcl 10736 |
. . . . . . . . . 10
| |
| 108 | 64, 67, 107 | syl2anc 411 |
. . . . . . . . 9
|
| 109 | 108, 100, 101 | ifcldadc 3609 |
. . . . . . . 8
|
| 110 | 46, 106, 97, 109 | fvmptd3 5696 |
. . . . . . 7
|
| 111 | 103, 110 | oveq12d 5985 |
. . . . . 6
|
| 112 | eqid 2207 |
. . . . . . 7
| |
| 113 | oveq1 5974 |
. . . . . . . . 9
| |
| 114 | 93, 113 | oveq12d 5985 |
. . . . . . . 8
|
| 115 | 92, 114 | ifbieq1d 3602 |
. . . . . . 7
|
| 116 | 17 | ad2antrr 488 |
. . . . . . . . . 10
|
| 117 | 32 | ad2antrr 488 |
. . . . . . . . . 10
|
| 118 | pczcl 12736 |
. . . . . . . . . 10
| |
| 119 | 52, 116, 117, 118 | syl12anc 1248 |
. . . . . . . . 9
|
| 120 | zexpcl 10736 |
. . . . . . . . 9
| |
| 121 | 64, 119, 120 | syl2anc 411 |
. . . . . . . 8
|
| 122 | 121, 100, 101 | ifcldadc 3609 |
. . . . . . 7
|
| 123 | 112, 115, 97, 122 | fvmptd3 5696 |
. . . . . 6
|
| 124 | 91, 111, 123 | 3eqtr4rd 2251 |
. . . . 5
|
| 125 | 36, 45, 51, 124 | prod3fmul 11967 |
. . . 4
|
| 126 | 37, 15, 16, 20, 25, 38 | lgsdilem2 15628 |
. . . . 5
|
| 127 | 37, 16, 15, 25, 20, 46 | lgsdilem2 15628 |
. . . . . 6
|
| 128 | 18, 19 | mulcomd 8129 |
. . . . . . . 8
|
| 129 | 128 | fveq2d 5603 |
. . . . . . 7
|
| 130 | 129 | fveq2d 5603 |
. . . . . 6
|
| 131 | 127, 130 | eqtr4d 2243 |
. . . . 5
|
| 132 | 126, 131 | oveq12d 5985 |
. . . 4
|
| 133 | 125, 132 | eqtr4d 2243 |
. . 3
|
| 134 | 14, 133 | oveq12d 5985 |
. 2
|
| 135 | 112 | lgsval4 15612 |
. . 3
|
| 136 | 37, 17, 32, 135 | syl3anc 1250 |
. 2
|
| 137 | 38 | lgsval4 15612 |
. . . . 5
|
| 138 | 37, 15, 20, 137 | syl3anc 1250 |
. . . 4
|
| 139 | 46 | lgsval4 15612 |
. . . . 5
|
| 140 | 37, 16, 25, 139 | syl3anc 1250 |
. . . 4
|
| 141 | 138, 140 | oveq12d 5985 |
. . 3
|
| 142 | neg1z 9439 |
. . . . . . 7
| |
| 143 | 142 | a1i 9 |
. . . . . 6
|
| 144 | 1zzd 9434 |
. . . . . 6
| |
| 145 | zdclt 9485 |
. . . . . . . 8
| |
| 146 | 15, 21, 145 | sylancl 413 |
. . . . . . 7
|
| 147 | zdclt 9485 |
. . . . . . . 8
| |
| 148 | 37, 21, 147 | sylancl 413 |
. . . . . . 7
|
| 149 | dcan2 937 |
. . . . . . 7
| |
| 150 | 146, 148, 149 | sylc 62 |
. . . . . 6
|
| 151 | 143, 144, 150 | ifcldcd 3617 |
. . . . 5
|
| 152 | 151 | zcnd 9531 |
. . . 4
|
| 153 | 40 | ffvelcdmda 5738 |
. . . . . . 7
|
| 154 | zmulcl 9461 |
. . . . . . . 8
| |
| 155 | 154 | adantl 277 |
. . . . . . 7
|
| 156 | 35, 144, 153, 155 | seqf 10646 |
. . . . . 6
|
| 157 | nnabscl 11526 |
. . . . . . 7
| |
| 158 | 15, 20, 157 | syl2anc 411 |
. . . . . 6
|
| 159 | 156, 158 | ffvelcdmd 5739 |
. . . . 5
|
| 160 | 159 | zcnd 9531 |
. . . 4
|
| 161 | zdclt 9485 |
. . . . . . . 8
| |
| 162 | 16, 21, 161 | sylancl 413 |
. . . . . . 7
|
| 163 | dcan2 937 |
. . . . . . 7
| |
| 164 | 162, 148, 163 | sylc 62 |
. . . . . 6
|
| 165 | 143, 144, 164 | ifcldcd 3617 |
. . . . 5
|
| 166 | 165 | zcnd 9531 |
. . . 4
|
| 167 | 48 | ffvelcdmda 5738 |
. . . . . . 7
|
| 168 | 35, 144, 167, 155 | seqf 10646 |
. . . . . 6
|
| 169 | nnabscl 11526 |
. . . . . . 7
| |
| 170 | 16, 25, 169 | syl2anc 411 |
. . . . . 6
|
| 171 | 168, 170 | ffvelcdmd 5739 |
. . . . 5
|
| 172 | 171 | zcnd 9531 |
. . . 4
|
| 173 | 152, 160, 166, 172 | mul4d 8262 |
. . 3
|
| 174 | 141, 173 | eqtrd 2240 |
. 2
|
| 175 | 134, 136, 174 | 3eqtr4d 2250 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-iinf 4654 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-mulrcl 8059 ax-addcom 8060 ax-mulcom 8061 ax-addass 8062 ax-mulass 8063 ax-distr 8064 ax-i2m1 8065 ax-0lt1 8066 ax-1rid 8067 ax-0id 8068 ax-rnegex 8069 ax-precex 8070 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-apti 8075 ax-pre-ltadd 8076 ax-pre-mulgt0 8077 ax-pre-mulext 8078 ax-arch 8079 ax-caucvg 8080 |
| This theorem depends on definitions: df-bi 117 df-stab 833 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-xor 1396 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rmo 2494 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-if 3580 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-tr 4159 df-id 4358 df-po 4361 df-iso 4362 df-iord 4431 df-on 4433 df-ilim 4434 df-suc 4436 df-iom 4657 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-isom 5299 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-recs 6414 df-irdg 6479 df-frec 6500 df-1o 6525 df-2o 6526 df-oadd 6529 df-er 6643 df-en 6851 df-dom 6852 df-fin 6853 df-sup 7112 df-inf 7113 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-sub 8280 df-neg 8281 df-reap 8683 df-ap 8690 df-div 8781 df-inn 9072 df-2 9130 df-3 9131 df-4 9132 df-5 9133 df-6 9134 df-7 9135 df-8 9136 df-n0 9331 df-z 9408 df-uz 9684 df-q 9776 df-rp 9811 df-fz 10166 df-fzo 10300 df-fl 10450 df-mod 10505 df-seqfrec 10630 df-exp 10721 df-ihash 10958 df-cj 11268 df-re 11269 df-im 11270 df-rsqrt 11424 df-abs 11425 df-clim 11705 df-proddc 11977 df-dvds 12214 df-gcd 12390 df-prm 12545 df-phi 12648 df-pc 12723 df-lgs 15590 |
| This theorem is referenced by: lgssq2 15633 lgsdinn0 15640 lgsquad2lem1 15673 |
| Copyright terms: Public domain | W3C validator |