ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ifelpwung GIF version

Theorem ifelpwung 4459
Description: Existence of a conditional class, quantitative version (closed form). (Contributed by BJ, 15-Aug-2024.)
Assertion
Ref Expression
ifelpwung ((𝐴𝑉𝐵𝑊) → if(𝜑, 𝐴, 𝐵) ∈ 𝒫 (𝐴𝐵))

Proof of Theorem ifelpwung
StepHypRef Expression
1 ifssun 3534 . 2 if(𝜑, 𝐴, 𝐵) ⊆ (𝐴𝐵)
2 unexg 4421 . . 3 ((𝐴𝑉𝐵𝑊) → (𝐴𝐵) ∈ V)
3 elpw2g 4135 . . 3 ((𝐴𝐵) ∈ V → (if(𝜑, 𝐴, 𝐵) ∈ 𝒫 (𝐴𝐵) ↔ if(𝜑, 𝐴, 𝐵) ⊆ (𝐴𝐵)))
42, 3syl 14 . 2 ((𝐴𝑉𝐵𝑊) → (if(𝜑, 𝐴, 𝐵) ∈ 𝒫 (𝐴𝐵) ↔ if(𝜑, 𝐴, 𝐵) ⊆ (𝐴𝐵)))
51, 4mpbiri 167 1 ((𝐴𝑉𝐵𝑊) → if(𝜑, 𝐴, 𝐵) ∈ 𝒫 (𝐴𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wcel 2136  Vcvv 2726  cun 3114  wss 3116  ifcif 3520  𝒫 cpw 3559
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pr 4187  ax-un 4411
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-rex 2450  df-rab 2453  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-uni 3790
This theorem is referenced by:  ifelpwund  4460  ifelpwun  4461
  Copyright terms: Public domain W3C validator