Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ifelpwung | GIF version |
Description: Existence of a conditional class, quantitative version (closed form). (Contributed by BJ, 15-Aug-2024.) |
Ref | Expression |
---|---|
ifelpwung | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → if(𝜑, 𝐴, 𝐵) ∈ 𝒫 (𝐴 ∪ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ifssun 3534 | . 2 ⊢ if(𝜑, 𝐴, 𝐵) ⊆ (𝐴 ∪ 𝐵) | |
2 | unexg 4421 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∪ 𝐵) ∈ V) | |
3 | elpw2g 4135 | . . 3 ⊢ ((𝐴 ∪ 𝐵) ∈ V → (if(𝜑, 𝐴, 𝐵) ∈ 𝒫 (𝐴 ∪ 𝐵) ↔ if(𝜑, 𝐴, 𝐵) ⊆ (𝐴 ∪ 𝐵))) | |
4 | 2, 3 | syl 14 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (if(𝜑, 𝐴, 𝐵) ∈ 𝒫 (𝐴 ∪ 𝐵) ↔ if(𝜑, 𝐴, 𝐵) ⊆ (𝐴 ∪ 𝐵))) |
5 | 1, 4 | mpbiri 167 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → if(𝜑, 𝐴, 𝐵) ∈ 𝒫 (𝐴 ∪ 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∈ wcel 2136 Vcvv 2726 ∪ cun 3114 ⊆ wss 3116 ifcif 3520 𝒫 cpw 3559 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pr 4187 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-rex 2450 df-rab 2453 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-if 3521 df-pw 3561 df-sn 3582 df-pr 3583 df-uni 3790 |
This theorem is referenced by: ifelpwund 4460 ifelpwun 4461 |
Copyright terms: Public domain | W3C validator |