ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ifelpwung GIF version

Theorem ifelpwung 4482
Description: Existence of a conditional class, quantitative version (closed form). (Contributed by BJ, 15-Aug-2024.)
Assertion
Ref Expression
ifelpwung ((𝐴𝑉𝐵𝑊) → if(𝜑, 𝐴, 𝐵) ∈ 𝒫 (𝐴𝐵))

Proof of Theorem ifelpwung
StepHypRef Expression
1 ifssun 3549 . 2 if(𝜑, 𝐴, 𝐵) ⊆ (𝐴𝐵)
2 unexg 4444 . . 3 ((𝐴𝑉𝐵𝑊) → (𝐴𝐵) ∈ V)
3 elpw2g 4157 . . 3 ((𝐴𝐵) ∈ V → (if(𝜑, 𝐴, 𝐵) ∈ 𝒫 (𝐴𝐵) ↔ if(𝜑, 𝐴, 𝐵) ⊆ (𝐴𝐵)))
42, 3syl 14 . 2 ((𝐴𝑉𝐵𝑊) → (if(𝜑, 𝐴, 𝐵) ∈ 𝒫 (𝐴𝐵) ↔ if(𝜑, 𝐴, 𝐵) ⊆ (𝐴𝐵)))
51, 4mpbiri 168 1 ((𝐴𝑉𝐵𝑊) → if(𝜑, 𝐴, 𝐵) ∈ 𝒫 (𝐴𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wcel 2148  Vcvv 2738  cun 3128  wss 3130  ifcif 3535  𝒫 cpw 3576
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-pr 4210  ax-un 4434
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-rex 2461  df-rab 2464  df-v 2740  df-un 3134  df-in 3136  df-ss 3143  df-if 3536  df-pw 3578  df-sn 3599  df-pr 3600  df-uni 3811
This theorem is referenced by:  ifelpwund  4483  ifelpwun  4484
  Copyright terms: Public domain W3C validator