![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ifelpwung | GIF version |
Description: Existence of a conditional class, quantitative version (closed form). (Contributed by BJ, 15-Aug-2024.) |
Ref | Expression |
---|---|
ifelpwung | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → if(𝜑, 𝐴, 𝐵) ∈ 𝒫 (𝐴 ∪ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ifssun 3549 | . 2 ⊢ if(𝜑, 𝐴, 𝐵) ⊆ (𝐴 ∪ 𝐵) | |
2 | unexg 4444 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∪ 𝐵) ∈ V) | |
3 | elpw2g 4157 | . . 3 ⊢ ((𝐴 ∪ 𝐵) ∈ V → (if(𝜑, 𝐴, 𝐵) ∈ 𝒫 (𝐴 ∪ 𝐵) ↔ if(𝜑, 𝐴, 𝐵) ⊆ (𝐴 ∪ 𝐵))) | |
4 | 2, 3 | syl 14 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (if(𝜑, 𝐴, 𝐵) ∈ 𝒫 (𝐴 ∪ 𝐵) ↔ if(𝜑, 𝐴, 𝐵) ⊆ (𝐴 ∪ 𝐵))) |
5 | 1, 4 | mpbiri 168 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → if(𝜑, 𝐴, 𝐵) ∈ 𝒫 (𝐴 ∪ 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∈ wcel 2148 Vcvv 2738 ∪ cun 3128 ⊆ wss 3130 ifcif 3535 𝒫 cpw 3576 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4122 ax-pr 4210 ax-un 4434 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-rex 2461 df-rab 2464 df-v 2740 df-un 3134 df-in 3136 df-ss 3143 df-if 3536 df-pw 3578 df-sn 3599 df-pr 3600 df-uni 3811 |
This theorem is referenced by: ifelpwund 4483 ifelpwun 4484 |
Copyright terms: Public domain | W3C validator |