ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ifelpwung GIF version

Theorem ifelpwung 4546
Description: Existence of a conditional class, quantitative version (closed form). (Contributed by BJ, 15-Aug-2024.)
Assertion
Ref Expression
ifelpwung ((𝐴𝑉𝐵𝑊) → if(𝜑, 𝐴, 𝐵) ∈ 𝒫 (𝐴𝐵))

Proof of Theorem ifelpwung
StepHypRef Expression
1 ifssun 3594 . 2 if(𝜑, 𝐴, 𝐵) ⊆ (𝐴𝐵)
2 unexg 4508 . . 3 ((𝐴𝑉𝐵𝑊) → (𝐴𝐵) ∈ V)
3 elpw2g 4216 . . 3 ((𝐴𝐵) ∈ V → (if(𝜑, 𝐴, 𝐵) ∈ 𝒫 (𝐴𝐵) ↔ if(𝜑, 𝐴, 𝐵) ⊆ (𝐴𝐵)))
42, 3syl 14 . 2 ((𝐴𝑉𝐵𝑊) → (if(𝜑, 𝐴, 𝐵) ∈ 𝒫 (𝐴𝐵) ↔ if(𝜑, 𝐴, 𝐵) ⊆ (𝐴𝐵)))
51, 4mpbiri 168 1 ((𝐴𝑉𝐵𝑊) → if(𝜑, 𝐴, 𝐵) ∈ 𝒫 (𝐴𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wcel 2178  Vcvv 2776  cun 3172  wss 3174  ifcif 3579  𝒫 cpw 3626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pr 4269  ax-un 4498
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-rex 2492  df-rab 2495  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-uni 3865
This theorem is referenced by:  ifelpwund  4547  ifelpwun  4548
  Copyright terms: Public domain W3C validator