ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ifelpwung GIF version

Theorem ifelpwung 4513
Description: Existence of a conditional class, quantitative version (closed form). (Contributed by BJ, 15-Aug-2024.)
Assertion
Ref Expression
ifelpwung ((𝐴𝑉𝐵𝑊) → if(𝜑, 𝐴, 𝐵) ∈ 𝒫 (𝐴𝐵))

Proof of Theorem ifelpwung
StepHypRef Expression
1 ifssun 3572 . 2 if(𝜑, 𝐴, 𝐵) ⊆ (𝐴𝐵)
2 unexg 4475 . . 3 ((𝐴𝑉𝐵𝑊) → (𝐴𝐵) ∈ V)
3 elpw2g 4186 . . 3 ((𝐴𝐵) ∈ V → (if(𝜑, 𝐴, 𝐵) ∈ 𝒫 (𝐴𝐵) ↔ if(𝜑, 𝐴, 𝐵) ⊆ (𝐴𝐵)))
42, 3syl 14 . 2 ((𝐴𝑉𝐵𝑊) → (if(𝜑, 𝐴, 𝐵) ∈ 𝒫 (𝐴𝐵) ↔ if(𝜑, 𝐴, 𝐵) ⊆ (𝐴𝐵)))
51, 4mpbiri 168 1 ((𝐴𝑉𝐵𝑊) → if(𝜑, 𝐴, 𝐵) ∈ 𝒫 (𝐴𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wcel 2164  Vcvv 2760  cun 3152  wss 3154  ifcif 3558  𝒫 cpw 3602
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pr 4239  ax-un 4465
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-rex 2478  df-rab 2481  df-v 2762  df-un 3158  df-in 3160  df-ss 3167  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-uni 3837
This theorem is referenced by:  ifelpwund  4514  ifelpwun  4515
  Copyright terms: Public domain W3C validator