ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elpw2g Unicode version

Theorem elpw2g 4135
Description: Membership in a power class. Theorem 86 of [Suppes] p. 47. (Contributed by NM, 7-Aug-2000.)
Assertion
Ref Expression
elpw2g  |-  ( B  e.  V  ->  ( A  e.  ~P B  <->  A 
C_  B ) )

Proof of Theorem elpw2g
StepHypRef Expression
1 elpwi 3568 . 2  |-  ( A  e.  ~P B  ->  A  C_  B )
2 ssexg 4121 . . . 4  |-  ( ( A  C_  B  /\  B  e.  V )  ->  A  e.  _V )
3 elpwg 3567 . . . . 5  |-  ( A  e.  _V  ->  ( A  e.  ~P B  <->  A 
C_  B ) )
43biimparc 297 . . . 4  |-  ( ( A  C_  B  /\  A  e.  _V )  ->  A  e.  ~P B
)
52, 4syldan 280 . . 3  |-  ( ( A  C_  B  /\  B  e.  V )  ->  A  e.  ~P B
)
65expcom 115 . 2  |-  ( B  e.  V  ->  ( A  C_  B  ->  A  e.  ~P B ) )
71, 6impbid2 142 1  |-  ( B  e.  V  ->  ( A  e.  ~P B  <->  A 
C_  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    e. wcel 2136   _Vcvv 2726    C_ wss 3116   ~Pcpw 3559
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147  ax-sep 4100
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-in 3122  df-ss 3129  df-pw 3561
This theorem is referenced by:  elpw2  4136  pwnss  4138  ifelpwung  4459  elfir  6938  istopg  12637  uniopn  12639  iscld  12743  ntrval  12750  clsval  12751  discld  12776  neival  12783  isnei  12784  restdis  12824  cnpfval  12835  cndis  12881  blfvalps  13025  blfps  13049  blf  13050  reldvg  13288
  Copyright terms: Public domain W3C validator