| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elpw2g | Unicode version | ||
| Description: Membership in a power class. Theorem 86 of [Suppes] p. 47. (Contributed by NM, 7-Aug-2000.) |
| Ref | Expression |
|---|---|
| elpw2g |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpwi 3638 |
. 2
| |
| 2 | ssexg 4202 |
. . . 4
| |
| 3 | elpwg 3637 |
. . . . 5
| |
| 4 | 3 | biimparc 299 |
. . . 4
|
| 5 | 2, 4 | syldan 282 |
. . 3
|
| 6 | 5 | expcom 116 |
. 2
|
| 7 | 1, 6 | impbid2 143 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-ext 2191 ax-sep 4181 |
| This theorem depends on definitions: df-bi 117 df-tru 1378 df-nf 1487 df-sb 1789 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-v 2781 df-in 3183 df-ss 3190 df-pw 3631 |
| This theorem is referenced by: elpw2 4220 pwnss 4222 ifelpwung 4549 pw2f1odclem 6963 elfir 7108 issubm 13471 issubg 13676 issubrng 14128 issubrg 14150 islssm 14286 islssmg 14287 lspval 14319 lspcl 14320 sraval 14366 istopg 14638 uniopn 14640 iscld 14742 ntrval 14749 clsval 14750 discld 14775 neival 14782 isnei 14783 restdis 14823 cnpfval 14834 cndis 14880 blfvalps 15024 blfps 15048 blf 15049 reldvg 15318 2omap 16270 pw1map 16272 |
| Copyright terms: Public domain | W3C validator |