| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > elpw2g | Unicode version | ||
| Description: Membership in a power class. Theorem 86 of [Suppes] p. 47. (Contributed by NM, 7-Aug-2000.) | 
| Ref | Expression | 
|---|---|
| elpw2g | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | elpwi 3614 | 
. 2
 | |
| 2 | ssexg 4172 | 
. . . 4
 | |
| 3 | elpwg 3613 | 
. . . . 5
 | |
| 4 | 3 | biimparc 299 | 
. . . 4
 | 
| 5 | 2, 4 | syldan 282 | 
. . 3
 | 
| 6 | 5 | expcom 116 | 
. 2
 | 
| 7 | 1, 6 | impbid2 143 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-sep 4151 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-in 3163 df-ss 3170 df-pw 3607 | 
| This theorem is referenced by: elpw2 4190 pwnss 4192 ifelpwung 4516 pw2f1odclem 6895 elfir 7039 issubm 13104 issubg 13303 issubrng 13755 issubrg 13777 islssm 13913 islssmg 13914 lspval 13946 lspcl 13947 sraval 13993 istopg 14235 uniopn 14237 iscld 14339 ntrval 14346 clsval 14347 discld 14372 neival 14379 isnei 14380 restdis 14420 cnpfval 14431 cndis 14477 blfvalps 14621 blfps 14645 blf 14646 reldvg 14915 | 
| Copyright terms: Public domain | W3C validator |