ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elpw2g Unicode version

Theorem elpw2g 4190
Description: Membership in a power class. Theorem 86 of [Suppes] p. 47. (Contributed by NM, 7-Aug-2000.)
Assertion
Ref Expression
elpw2g  |-  ( B  e.  V  ->  ( A  e.  ~P B  <->  A 
C_  B ) )

Proof of Theorem elpw2g
StepHypRef Expression
1 elpwi 3615 . 2  |-  ( A  e.  ~P B  ->  A  C_  B )
2 ssexg 4173 . . . 4  |-  ( ( A  C_  B  /\  B  e.  V )  ->  A  e.  _V )
3 elpwg 3614 . . . . 5  |-  ( A  e.  _V  ->  ( A  e.  ~P B  <->  A 
C_  B ) )
43biimparc 299 . . . 4  |-  ( ( A  C_  B  /\  A  e.  _V )  ->  A  e.  ~P B
)
52, 4syldan 282 . . 3  |-  ( ( A  C_  B  /\  B  e.  V )  ->  A  e.  ~P B
)
65expcom 116 . 2  |-  ( B  e.  V  ->  ( A  C_  B  ->  A  e.  ~P B ) )
71, 6impbid2 143 1  |-  ( B  e.  V  ->  ( A  e.  ~P B  <->  A 
C_  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    e. wcel 2167   _Vcvv 2763    C_ wss 3157   ~Pcpw 3606
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178  ax-sep 4152
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-in 3163  df-ss 3170  df-pw 3608
This theorem is referenced by:  elpw2  4191  pwnss  4193  ifelpwung  4517  pw2f1odclem  6904  elfir  7048  issubm  13174  issubg  13379  issubrng  13831  issubrg  13853  islssm  13989  islssmg  13990  lspval  14022  lspcl  14023  sraval  14069  istopg  14319  uniopn  14321  iscld  14423  ntrval  14430  clsval  14431  discld  14456  neival  14463  isnei  14464  restdis  14504  cnpfval  14515  cndis  14561  blfvalps  14705  blfps  14729  blf  14730  reldvg  14999  2omap  15726
  Copyright terms: Public domain W3C validator