ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elpw2g Unicode version

Theorem elpw2g 4142
Description: Membership in a power class. Theorem 86 of [Suppes] p. 47. (Contributed by NM, 7-Aug-2000.)
Assertion
Ref Expression
elpw2g  |-  ( B  e.  V  ->  ( A  e.  ~P B  <->  A 
C_  B ) )

Proof of Theorem elpw2g
StepHypRef Expression
1 elpwi 3575 . 2  |-  ( A  e.  ~P B  ->  A  C_  B )
2 ssexg 4128 . . . 4  |-  ( ( A  C_  B  /\  B  e.  V )  ->  A  e.  _V )
3 elpwg 3574 . . . . 5  |-  ( A  e.  _V  ->  ( A  e.  ~P B  <->  A 
C_  B ) )
43biimparc 297 . . . 4  |-  ( ( A  C_  B  /\  A  e.  _V )  ->  A  e.  ~P B
)
52, 4syldan 280 . . 3  |-  ( ( A  C_  B  /\  B  e.  V )  ->  A  e.  ~P B
)
65expcom 115 . 2  |-  ( B  e.  V  ->  ( A  C_  B  ->  A  e.  ~P B ) )
71, 6impbid2 142 1  |-  ( B  e.  V  ->  ( A  e.  ~P B  <->  A 
C_  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    e. wcel 2141   _Vcvv 2730    C_ wss 3121   ~Pcpw 3566
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152  ax-sep 4107
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-in 3127  df-ss 3134  df-pw 3568
This theorem is referenced by:  elpw2  4143  pwnss  4145  ifelpwung  4466  elfir  6950  issubm  12695  istopg  12791  uniopn  12793  iscld  12897  ntrval  12904  clsval  12905  discld  12930  neival  12937  isnei  12938  restdis  12978  cnpfval  12989  cndis  13035  blfvalps  13179  blfps  13203  blf  13204  reldvg  13442
  Copyright terms: Public domain W3C validator