| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elpw2g | Unicode version | ||
| Description: Membership in a power class. Theorem 86 of [Suppes] p. 47. (Contributed by NM, 7-Aug-2000.) |
| Ref | Expression |
|---|---|
| elpw2g |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpwi 3615 |
. 2
| |
| 2 | ssexg 4173 |
. . . 4
| |
| 3 | elpwg 3614 |
. . . . 5
| |
| 4 | 3 | biimparc 299 |
. . . 4
|
| 5 | 2, 4 | syldan 282 |
. . 3
|
| 6 | 5 | expcom 116 |
. 2
|
| 7 | 1, 6 | impbid2 143 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-sep 4152 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-in 3163 df-ss 3170 df-pw 3608 |
| This theorem is referenced by: elpw2 4191 pwnss 4193 ifelpwung 4517 pw2f1odclem 6904 elfir 7048 issubm 13176 issubg 13381 issubrng 13833 issubrg 13855 islssm 13991 islssmg 13992 lspval 14024 lspcl 14025 sraval 14071 istopg 14321 uniopn 14323 iscld 14425 ntrval 14432 clsval 14433 discld 14458 neival 14465 isnei 14466 restdis 14506 cnpfval 14517 cndis 14563 blfvalps 14707 blfps 14731 blf 14732 reldvg 15001 2omap 15728 |
| Copyright terms: Public domain | W3C validator |