| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > unexg | Unicode version | ||
| Description: A union of two sets is a set. Corollary 5.8 of [TakeutiZaring] p. 16. (Contributed by NM, 18-Sep-2006.) |
| Ref | Expression |
|---|---|
| unexg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2783 |
. 2
| |
| 2 | elex 2783 |
. 2
| |
| 3 | unexb 4489 |
. . 3
| |
| 4 | 3 | biimpi 120 |
. 2
|
| 5 | 1, 2, 4 | syl2an 289 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pr 4253 ax-un 4480 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-rex 2490 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-sn 3639 df-pr 3640 df-uni 3851 |
| This theorem is referenced by: tpexg 4491 eldifpw 4524 ifelpwung 4528 xpexg 4789 tposexg 6344 tfrlemisucaccv 6411 tfrlemibxssdm 6413 tfrlemibfn 6414 tfr1onlemsucaccv 6427 tfr1onlembxssdm 6429 tfr1onlembfn 6430 tfrcllemsucaccv 6440 tfrcllembxssdm 6442 tfrcllembfn 6443 rdgtfr 6460 rdgruledefgg 6461 rdgivallem 6467 djuex 7145 zfz1isolem1 10985 ennnfonelemp1 12777 setsvalg 12862 setsex 12864 setsslid 12883 strleund 12935 prdsex 13101 prdsval 13105 igsumvalx 13221 psrval 14428 plyval 15204 elply2 15207 plyss 15210 plyco 15231 plycj 15233 |
| Copyright terms: Public domain | W3C validator |