Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > unexg | Unicode version |
Description: A union of two sets is a set. Corollary 5.8 of [TakeutiZaring] p. 16. (Contributed by NM, 18-Sep-2006.) |
Ref | Expression |
---|---|
unexg |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 2737 | . 2 | |
2 | elex 2737 | . 2 | |
3 | unexb 4420 | . . 3 | |
4 | 3 | biimpi 119 | . 2 |
5 | 1, 2, 4 | syl2an 287 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wcel 2136 cvv 2726 cun 3114 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pr 4187 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-sn 3582 df-pr 3583 df-uni 3790 |
This theorem is referenced by: tpexg 4422 eldifpw 4455 ifelpwung 4459 xpexg 4718 tposexg 6226 tfrlemisucaccv 6293 tfrlemibxssdm 6295 tfrlemibfn 6296 tfr1onlemsucaccv 6309 tfr1onlembxssdm 6311 tfr1onlembfn 6312 tfrcllemsucaccv 6322 tfrcllembxssdm 6324 tfrcllembfn 6325 rdgtfr 6342 rdgruledefgg 6343 rdgivallem 6349 djuex 7008 zfz1isolem1 10753 ennnfonelemp1 12339 setsvalg 12424 setsex 12426 setsslid 12444 strleund 12483 |
Copyright terms: Public domain | W3C validator |