Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > unexg | Unicode version |
Description: A union of two sets is a set. Corollary 5.8 of [TakeutiZaring] p. 16. (Contributed by NM, 18-Sep-2006.) |
Ref | Expression |
---|---|
unexg |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 2741 | . 2 | |
2 | elex 2741 | . 2 | |
3 | unexb 4427 | . . 3 | |
4 | 3 | biimpi 119 | . 2 |
5 | 1, 2, 4 | syl2an 287 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wcel 2141 cvv 2730 cun 3119 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pr 4194 ax-un 4418 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-sn 3589 df-pr 3590 df-uni 3797 |
This theorem is referenced by: tpexg 4429 eldifpw 4462 ifelpwung 4466 xpexg 4725 tposexg 6237 tfrlemisucaccv 6304 tfrlemibxssdm 6306 tfrlemibfn 6307 tfr1onlemsucaccv 6320 tfr1onlembxssdm 6322 tfr1onlembfn 6323 tfrcllemsucaccv 6333 tfrcllembxssdm 6335 tfrcllembfn 6336 rdgtfr 6353 rdgruledefgg 6354 rdgivallem 6360 djuex 7020 zfz1isolem1 10775 ennnfonelemp1 12361 setsvalg 12446 setsex 12448 setsslid 12466 strleund 12506 |
Copyright terms: Public domain | W3C validator |