ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unexg Unicode version

Theorem unexg 4426
Description: A union of two sets is a set. Corollary 5.8 of [TakeutiZaring] p. 16. (Contributed by NM, 18-Sep-2006.)
Assertion
Ref Expression
unexg  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A  u.  B
)  e.  _V )

Proof of Theorem unexg
StepHypRef Expression
1 elex 2741 . 2  |-  ( A  e.  V  ->  A  e.  _V )
2 elex 2741 . 2  |-  ( B  e.  W  ->  B  e.  _V )
3 unexb 4425 . . 3  |-  ( ( A  e.  _V  /\  B  e.  _V )  <->  ( A  u.  B )  e.  _V )
43biimpi 119 . 2  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  ( A  u.  B
)  e.  _V )
51, 2, 4syl2an 287 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A  u.  B
)  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    e. wcel 2141   _Vcvv 2730    u. cun 3119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4105  ax-pr 4192  ax-un 4416
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-rex 2454  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-sn 3587  df-pr 3588  df-uni 3795
This theorem is referenced by:  tpexg  4427  eldifpw  4460  ifelpwung  4464  xpexg  4723  tposexg  6235  tfrlemisucaccv  6302  tfrlemibxssdm  6304  tfrlemibfn  6305  tfr1onlemsucaccv  6318  tfr1onlembxssdm  6320  tfr1onlembfn  6321  tfrcllemsucaccv  6331  tfrcllembxssdm  6333  tfrcllembfn  6334  rdgtfr  6351  rdgruledefgg  6352  rdgivallem  6358  djuex  7017  zfz1isolem1  10764  ennnfonelemp1  12350  setsvalg  12435  setsex  12437  setsslid  12455  strleund  12495
  Copyright terms: Public domain W3C validator