| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > unexg | Unicode version | ||
| Description: A union of two sets is a set. Corollary 5.8 of [TakeutiZaring] p. 16. (Contributed by NM, 18-Sep-2006.) |
| Ref | Expression |
|---|---|
| unexg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2788 |
. 2
| |
| 2 | elex 2788 |
. 2
| |
| 3 | unexb 4507 |
. . 3
| |
| 4 | 3 | biimpi 120 |
. 2
|
| 5 | 1, 2, 4 | syl2an 289 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pr 4269 ax-un 4498 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-rex 2492 df-v 2778 df-un 3178 df-in 3180 df-ss 3187 df-sn 3649 df-pr 3650 df-uni 3865 |
| This theorem is referenced by: tpexg 4509 eldifpw 4542 ifelpwung 4546 xpexg 4807 tposexg 6367 tfrlemisucaccv 6434 tfrlemibxssdm 6436 tfrlemibfn 6437 tfr1onlemsucaccv 6450 tfr1onlembxssdm 6452 tfr1onlembfn 6453 tfrcllemsucaccv 6463 tfrcllembxssdm 6465 tfrcllembfn 6466 rdgtfr 6483 rdgruledefgg 6484 rdgivallem 6490 djuex 7171 zfz1isolem1 11022 ennnfonelemp1 12892 setsvalg 12977 setsex 12979 setsslid 12998 strleund 13050 prdsex 13216 prdsval 13220 igsumvalx 13336 psrval 14543 plyval 15319 elply2 15322 plyss 15325 plyco 15346 plycj 15348 uhgrunop 15798 upgrunop 15833 umgrunop 15835 |
| Copyright terms: Public domain | W3C validator |