Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > unexg | Unicode version |
Description: A union of two sets is a set. Corollary 5.8 of [TakeutiZaring] p. 16. (Contributed by NM, 18-Sep-2006.) |
Ref | Expression |
---|---|
unexg |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 2741 | . 2 | |
2 | elex 2741 | . 2 | |
3 | unexb 4425 | . . 3 | |
4 | 3 | biimpi 119 | . 2 |
5 | 1, 2, 4 | syl2an 287 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wcel 2141 cvv 2730 cun 3119 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4105 ax-pr 4192 ax-un 4416 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-sn 3587 df-pr 3588 df-uni 3795 |
This theorem is referenced by: tpexg 4427 eldifpw 4460 ifelpwung 4464 xpexg 4723 tposexg 6235 tfrlemisucaccv 6302 tfrlemibxssdm 6304 tfrlemibfn 6305 tfr1onlemsucaccv 6318 tfr1onlembxssdm 6320 tfr1onlembfn 6321 tfrcllemsucaccv 6331 tfrcllembxssdm 6333 tfrcllembfn 6334 rdgtfr 6351 rdgruledefgg 6352 rdgivallem 6358 djuex 7017 zfz1isolem1 10764 ennnfonelemp1 12350 setsvalg 12435 setsex 12437 setsslid 12455 strleund 12495 |
Copyright terms: Public domain | W3C validator |