| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > unexg | Unicode version | ||
| Description: A union of two sets is a set. Corollary 5.8 of [TakeutiZaring] p. 16. (Contributed by NM, 18-Sep-2006.) |
| Ref | Expression |
|---|---|
| unexg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2811 |
. 2
| |
| 2 | elex 2811 |
. 2
| |
| 3 | unexb 4532 |
. . 3
| |
| 4 | 3 | biimpi 120 |
. 2
|
| 5 | 1, 2, 4 | syl2an 289 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pr 4292 ax-un 4523 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-sn 3672 df-pr 3673 df-uni 3888 |
| This theorem is referenced by: tpexg 4534 eldifpw 4567 ifelpwung 4571 xpexg 4832 tposexg 6402 tfrlemisucaccv 6469 tfrlemibxssdm 6471 tfrlemibfn 6472 tfr1onlemsucaccv 6485 tfr1onlembxssdm 6487 tfr1onlembfn 6488 tfrcllemsucaccv 6498 tfrcllembxssdm 6500 tfrcllembfn 6501 rdgtfr 6518 rdgruledefgg 6519 rdgivallem 6525 djuex 7206 zfz1isolem1 11057 ennnfonelemp1 12972 setsvalg 13057 setsex 13059 setsslid 13078 strleund 13131 prdsex 13297 prdsval 13301 igsumvalx 13417 psrval 14624 plyval 15400 elply2 15403 plyss 15406 plyco 15427 plycj 15429 uhgrunop 15881 upgrunop 15919 umgrunop 15921 |
| Copyright terms: Public domain | W3C validator |