| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > unexg | Unicode version | ||
| Description: A union of two sets is a set. Corollary 5.8 of [TakeutiZaring] p. 16. (Contributed by NM, 18-Sep-2006.) |
| Ref | Expression |
|---|---|
| unexg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2782 |
. 2
| |
| 2 | elex 2782 |
. 2
| |
| 3 | unexb 4488 |
. . 3
| |
| 4 | 3 | biimpi 120 |
. 2
|
| 5 | 1, 2, 4 | syl2an 289 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pr 4252 ax-un 4479 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-rex 2489 df-v 2773 df-un 3169 df-in 3171 df-ss 3178 df-sn 3638 df-pr 3639 df-uni 3850 |
| This theorem is referenced by: tpexg 4490 eldifpw 4523 ifelpwung 4527 xpexg 4788 tposexg 6343 tfrlemisucaccv 6410 tfrlemibxssdm 6412 tfrlemibfn 6413 tfr1onlemsucaccv 6426 tfr1onlembxssdm 6428 tfr1onlembfn 6429 tfrcllemsucaccv 6439 tfrcllembxssdm 6441 tfrcllembfn 6442 rdgtfr 6459 rdgruledefgg 6460 rdgivallem 6466 djuex 7144 zfz1isolem1 10983 ennnfonelemp1 12748 setsvalg 12833 setsex 12835 setsslid 12854 strleund 12906 prdsex 13072 prdsval 13076 igsumvalx 13192 psrval 14399 plyval 15175 elply2 15178 plyss 15181 plyco 15202 plycj 15204 |
| Copyright terms: Public domain | W3C validator |