ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ennnfonelemp1 Unicode version

Theorem ennnfonelemp1 12648
Description: Lemma for ennnfone 12667. Value of  H at a successor. (Contributed by Jim Kingdon, 23-Jul-2023.)
Hypotheses
Ref Expression
ennnfonelemh.dceq  |-  ( ph  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y )
ennnfonelemh.f  |-  ( ph  ->  F : om -onto-> A
)
ennnfonelemh.ne  |-  ( ph  ->  A. n  e.  om  E. k  e.  om  A. j  e.  suc  n ( F `  k )  =/=  ( F `  j ) )
ennnfonelemh.g  |-  G  =  ( x  e.  ( A  ^pm  om ) ,  y  e.  om  |->  if ( ( F `  y )  e.  ( F " y ) ,  x ,  ( x  u.  { <. dom  x ,  ( F `
 y ) >. } ) ) )
ennnfonelemh.n  |-  N  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 )
ennnfonelemh.j  |-  J  =  ( x  e.  NN0  |->  if ( x  =  0 ,  (/) ,  ( `' N `  ( x  -  1 ) ) ) )
ennnfonelemh.h  |-  H  =  seq 0 ( G ,  J )
ennnfonelemp1.p  |-  ( ph  ->  P  e.  NN0 )
Assertion
Ref Expression
ennnfonelemp1  |-  ( ph  ->  ( H `  ( P  +  1 ) )  =  if ( ( F `  ( `' N `  P ) )  e.  ( F
" ( `' N `  P ) ) ,  ( H `  P
) ,  ( ( H `  P )  u.  { <. dom  ( H `  P ) ,  ( F `  ( `' N `  P ) ) >. } ) ) )
Distinct variable groups:    A, j, x, y    x, F, y   
j, G    x, H, y    j, J    x, N, y    P, j, x, y    ph, j, x, y
Allowed substitution hints:    ph( k, n)    A( k, n)    P( k, n)    F( j, k, n)    G( x, y, k, n)    H( j, k, n)    J( x, y, k, n)    N( j,
k, n)

Proof of Theorem ennnfonelemp1
Dummy variables  f  g are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ennnfonelemp1.p . . . . 5  |-  ( ph  ->  P  e.  NN0 )
2 nn0uz 9653 . . . . 5  |-  NN0  =  ( ZZ>= `  0 )
31, 2eleqtrdi 2289 . . . 4  |-  ( ph  ->  P  e.  ( ZZ>= ` 
0 ) )
4 ennnfonelemh.dceq . . . . 5  |-  ( ph  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y )
5 ennnfonelemh.f . . . . 5  |-  ( ph  ->  F : om -onto-> A
)
6 ennnfonelemh.ne . . . . 5  |-  ( ph  ->  A. n  e.  om  E. k  e.  om  A. j  e.  suc  n ( F `  k )  =/=  ( F `  j ) )
7 ennnfonelemh.g . . . . 5  |-  G  =  ( x  e.  ( A  ^pm  om ) ,  y  e.  om  |->  if ( ( F `  y )  e.  ( F " y ) ,  x ,  ( x  u.  { <. dom  x ,  ( F `
 y ) >. } ) ) )
8 ennnfonelemh.n . . . . 5  |-  N  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 )
9 ennnfonelemh.j . . . . 5  |-  J  =  ( x  e.  NN0  |->  if ( x  =  0 ,  (/) ,  ( `' N `  ( x  -  1 ) ) ) )
10 ennnfonelemh.h . . . . 5  |-  H  =  seq 0 ( G ,  J )
114, 5, 6, 7, 8, 9, 10ennnfonelemj0 12643 . . . 4  |-  ( ph  ->  ( J `  0
)  e.  { g  e.  ( A  ^pm  om )  |  dom  g  e.  om } )
124, 5, 6, 7, 8, 9, 10ennnfonelemg 12645 . . . 4  |-  ( (
ph  /\  ( f  e.  { g  e.  ( A  ^pm  om )  |  dom  g  e.  om }  /\  j  e.  om ) )  ->  (
f G j )  e.  { g  e.  ( A  ^pm  om )  |  dom  g  e.  om } )
134, 5, 6, 7, 8, 9, 10ennnfonelemjn 12644 . . . 4  |-  ( (
ph  /\  f  e.  ( ZZ>= `  ( 0  +  1 ) ) )  ->  ( J `  f )  e.  om )
143, 11, 12, 13seqp1cd 10579 . . 3  |-  ( ph  ->  (  seq 0 ( G ,  J ) `
 ( P  + 
1 ) )  =  ( (  seq 0
( G ,  J
) `  P ) G ( J `  ( P  +  1
) ) ) )
1510fveq1i 5562 . . . 4  |-  ( H `
 ( P  + 
1 ) )  =  (  seq 0 ( G ,  J ) `
 ( P  + 
1 ) )
1615a1i 9 . . 3  |-  ( ph  ->  ( H `  ( P  +  1 ) )  =  (  seq 0 ( G ,  J ) `  ( P  +  1 ) ) )
1710fveq1i 5562 . . . . 5  |-  ( H `
 P )  =  (  seq 0 ( G ,  J ) `
 P )
1817a1i 9 . . . 4  |-  ( ph  ->  ( H `  P
)  =  (  seq 0 ( G ,  J ) `  P
) )
19 eqeq1 2203 . . . . . . 7  |-  ( x  =  ( P  + 
1 )  ->  (
x  =  0  <->  ( P  +  1 )  =  0 ) )
20 fvoveq1 5948 . . . . . . 7  |-  ( x  =  ( P  + 
1 )  ->  ( `' N `  ( x  -  1 ) )  =  ( `' N `  ( ( P  + 
1 )  -  1 ) ) )
2119, 20ifbieq2d 3586 . . . . . 6  |-  ( x  =  ( P  + 
1 )  ->  if ( x  =  0 ,  (/) ,  ( `' N `  ( x  -  1 ) ) )  =  if ( ( P  +  1 )  =  0 ,  (/) ,  ( `' N `  ( ( P  + 
1 )  -  1 ) ) ) )
22 peano2nn0 9306 . . . . . . 7  |-  ( P  e.  NN0  ->  ( P  +  1 )  e. 
NN0 )
231, 22syl 14 . . . . . 6  |-  ( ph  ->  ( P  +  1 )  e.  NN0 )
24 nn0p1gt0 9295 . . . . . . . . . . . 12  |-  ( P  e.  NN0  ->  0  < 
( P  +  1 ) )
2524gt0ne0d 8556 . . . . . . . . . . 11  |-  ( P  e.  NN0  ->  ( P  +  1 )  =/=  0 )
2625neneqd 2388 . . . . . . . . . 10  |-  ( P  e.  NN0  ->  -.  ( P  +  1 )  =  0 )
2726iffalsed 3572 . . . . . . . . 9  |-  ( P  e.  NN0  ->  if ( ( P  +  1 )  =  0 ,  (/) ,  ( `' N `  ( ( P  + 
1 )  -  1 ) ) )  =  ( `' N `  ( ( P  + 
1 )  -  1 ) ) )
28 nn0cn 9276 . . . . . . . . . . 11  |-  ( P  e.  NN0  ->  P  e.  CC )
29 1cnd 8059 . . . . . . . . . . 11  |-  ( P  e.  NN0  ->  1  e.  CC )
3028, 29pncand 8355 . . . . . . . . . 10  |-  ( P  e.  NN0  ->  ( ( P  +  1 )  -  1 )  =  P )
3130fveq2d 5565 . . . . . . . . 9  |-  ( P  e.  NN0  ->  ( `' N `  ( ( P  +  1 )  -  1 ) )  =  ( `' N `  P ) )
3227, 31eqtrd 2229 . . . . . . . 8  |-  ( P  e.  NN0  ->  if ( ( P  +  1 )  =  0 ,  (/) ,  ( `' N `  ( ( P  + 
1 )  -  1 ) ) )  =  ( `' N `  P ) )
338frechashgf1o 10537 . . . . . . . . . . 11  |-  N : om
-1-1-onto-> NN0
34 f1ocnv 5520 . . . . . . . . . . 11  |-  ( N : om -1-1-onto-> NN0  ->  `' N : NN0
-1-1-onto-> om )
3533, 34ax-mp 5 . . . . . . . . . 10  |-  `' N : NN0
-1-1-onto-> om
36 f1of 5507 . . . . . . . . . 10  |-  ( `' N : NN0 -1-1-onto-> om  ->  `' N : NN0 --> om )
3735, 36mp1i 10 . . . . . . . . 9  |-  ( P  e.  NN0  ->  `' N : NN0 --> om )
38 id 19 . . . . . . . . 9  |-  ( P  e.  NN0  ->  P  e. 
NN0 )
3937, 38ffvelcdmd 5701 . . . . . . . 8  |-  ( P  e.  NN0  ->  ( `' N `  P )  e.  om )
4032, 39eqeltrd 2273 . . . . . . 7  |-  ( P  e.  NN0  ->  if ( ( P  +  1 )  =  0 ,  (/) ,  ( `' N `  ( ( P  + 
1 )  -  1 ) ) )  e. 
om )
411, 40syl 14 . . . . . 6  |-  ( ph  ->  if ( ( P  +  1 )  =  0 ,  (/) ,  ( `' N `  ( ( P  +  1 )  -  1 ) ) )  e.  om )
429, 21, 23, 41fvmptd3 5658 . . . . 5  |-  ( ph  ->  ( J `  ( P  +  1 ) )  =  if ( ( P  +  1 )  =  0 ,  (/) ,  ( `' N `  ( ( P  + 
1 )  -  1 ) ) ) )
431, 32syl 14 . . . . 5  |-  ( ph  ->  if ( ( P  +  1 )  =  0 ,  (/) ,  ( `' N `  ( ( P  +  1 )  -  1 ) ) )  =  ( `' N `  P ) )
4442, 43eqtr2d 2230 . . . 4  |-  ( ph  ->  ( `' N `  P )  =  ( J `  ( P  +  1 ) ) )
4518, 44oveq12d 5943 . . 3  |-  ( ph  ->  ( ( H `  P ) G ( `' N `  P ) )  =  ( (  seq 0 ( G ,  J ) `  P ) G ( J `  ( P  +  1 ) ) ) )
4614, 16, 453eqtr4d 2239 . 2  |-  ( ph  ->  ( H `  ( P  +  1 ) )  =  ( ( H `  P ) G ( `' N `  P ) ) )
474, 5, 6, 7, 8, 9, 10ennnfonelemh 12646 . . . 4  |-  ( ph  ->  H : NN0 --> ( A 
^pm  om ) )
4847, 1ffvelcdmd 5701 . . 3  |-  ( ph  ->  ( H `  P
)  e.  ( A 
^pm  om ) )
491, 39syl 14 . . 3  |-  ( ph  ->  ( `' N `  P )  e.  om )
5048elexd 2776 . . . 4  |-  ( ph  ->  ( H `  P
)  e.  _V )
51 dmexg 4931 . . . . . . . 8  |-  ( ( H `  P )  e.  _V  ->  dom  ( H `  P )  e.  _V )
5250, 51syl 14 . . . . . . 7  |-  ( ph  ->  dom  ( H `  P )  e.  _V )
53 fof 5483 . . . . . . . . 9  |-  ( F : om -onto-> A  ->  F : om --> A )
545, 53syl 14 . . . . . . . 8  |-  ( ph  ->  F : om --> A )
5554, 49ffvelcdmd 5701 . . . . . . 7  |-  ( ph  ->  ( F `  ( `' N `  P ) )  e.  A )
56 opexg 4262 . . . . . . 7  |-  ( ( dom  ( H `  P )  e.  _V  /\  ( F `  ( `' N `  P ) )  e.  A )  ->  <. dom  ( H `  P ) ,  ( F `  ( `' N `  P ) ) >.  e.  _V )
5752, 55, 56syl2anc 411 . . . . . 6  |-  ( ph  -> 
<. dom  ( H `  P ) ,  ( F `  ( `' N `  P ) ) >.  e.  _V )
58 snexg 4218 . . . . . 6  |-  ( <. dom  ( H `  P
) ,  ( F `
 ( `' N `  P ) ) >.  e.  _V  ->  { <. dom  ( H `  P ) ,  ( F `  ( `' N `  P ) ) >. }  e.  _V )
5957, 58syl 14 . . . . 5  |-  ( ph  ->  { <. dom  ( H `  P ) ,  ( F `  ( `' N `  P ) ) >. }  e.  _V )
60 unexg 4479 . . . . 5  |-  ( ( ( H `  P
)  e.  _V  /\  {
<. dom  ( H `  P ) ,  ( F `  ( `' N `  P ) ) >. }  e.  _V )  ->  ( ( H `
 P )  u. 
{ <. dom  ( H `  P ) ,  ( F `  ( `' N `  P ) ) >. } )  e. 
_V )
6150, 59, 60syl2anc 411 . . . 4  |-  ( ph  ->  ( ( H `  P )  u.  { <. dom  ( H `  P ) ,  ( F `  ( `' N `  P ) ) >. } )  e. 
_V )
624, 5, 49ennnfonelemdc 12641 . . . 4  |-  ( ph  -> DECID  ( F `  ( `' N `  P ) )  e.  ( F
" ( `' N `  P ) ) )
6350, 61, 62ifcldcd 3598 . . 3  |-  ( ph  ->  if ( ( F `
 ( `' N `  P ) )  e.  ( F " ( `' N `  P ) ) ,  ( H `
 P ) ,  ( ( H `  P )  u.  { <. dom  ( H `  P ) ,  ( F `  ( `' N `  P ) ) >. } ) )  e.  _V )
64 id 19 . . . . 5  |-  ( x  =  ( H `  P )  ->  x  =  ( H `  P ) )
65 dmeq 4867 . . . . . . . 8  |-  ( x  =  ( H `  P )  ->  dom  x  =  dom  ( H `
 P ) )
6665opeq1d 3815 . . . . . . 7  |-  ( x  =  ( H `  P )  ->  <. dom  x ,  ( F `  y ) >.  =  <. dom  ( H `  P
) ,  ( F `
 y ) >.
)
6766sneqd 3636 . . . . . 6  |-  ( x  =  ( H `  P )  ->  { <. dom  x ,  ( F `
 y ) >. }  =  { <. dom  ( H `  P ) ,  ( F `  y ) >. } )
6864, 67uneq12d 3319 . . . . 5  |-  ( x  =  ( H `  P )  ->  (
x  u.  { <. dom  x ,  ( F `
 y ) >. } )  =  ( ( H `  P
)  u.  { <. dom  ( H `  P
) ,  ( F `
 y ) >. } ) )
6964, 68ifeq12d 3581 . . . 4  |-  ( x  =  ( H `  P )  ->  if ( ( F `  y )  e.  ( F " y ) ,  x ,  ( x  u.  { <. dom  x ,  ( F `
 y ) >. } ) )  =  if ( ( F `
 y )  e.  ( F " y
) ,  ( H `
 P ) ,  ( ( H `  P )  u.  { <. dom  ( H `  P ) ,  ( F `  y )
>. } ) ) )
70 fveq2 5561 . . . . . 6  |-  ( y  =  ( `' N `  P )  ->  ( F `  y )  =  ( F `  ( `' N `  P ) ) )
71 imaeq2 5006 . . . . . 6  |-  ( y  =  ( `' N `  P )  ->  ( F " y )  =  ( F " ( `' N `  P ) ) )
7270, 71eleq12d 2267 . . . . 5  |-  ( y  =  ( `' N `  P )  ->  (
( F `  y
)  e.  ( F
" y )  <->  ( F `  ( `' N `  P ) )  e.  ( F " ( `' N `  P ) ) ) )
7370opeq2d 3816 . . . . . . 7  |-  ( y  =  ( `' N `  P )  ->  <. dom  ( H `  P ) ,  ( F `  y ) >.  =  <. dom  ( H `  P
) ,  ( F `
 ( `' N `  P ) ) >.
)
7473sneqd 3636 . . . . . 6  |-  ( y  =  ( `' N `  P )  ->  { <. dom  ( H `  P
) ,  ( F `
 y ) >. }  =  { <. dom  ( H `  P ) ,  ( F `  ( `' N `  P ) ) >. } )
7574uneq2d 3318 . . . . 5  |-  ( y  =  ( `' N `  P )  ->  (
( H `  P
)  u.  { <. dom  ( H `  P
) ,  ( F `
 y ) >. } )  =  ( ( H `  P
)  u.  { <. dom  ( H `  P
) ,  ( F `
 ( `' N `  P ) ) >. } ) )
7672, 75ifbieq2d 3586 . . . 4  |-  ( y  =  ( `' N `  P )  ->  if ( ( F `  y )  e.  ( F " y ) ,  ( H `  P ) ,  ( ( H `  P
)  u.  { <. dom  ( H `  P
) ,  ( F `
 y ) >. } ) )  =  if ( ( F `
 ( `' N `  P ) )  e.  ( F " ( `' N `  P ) ) ,  ( H `
 P ) ,  ( ( H `  P )  u.  { <. dom  ( H `  P ) ,  ( F `  ( `' N `  P ) ) >. } ) ) )
7769, 76, 7ovmpog 6061 . . 3  |-  ( ( ( H `  P
)  e.  ( A 
^pm  om )  /\  ( `' N `  P )  e.  om  /\  if ( ( F `  ( `' N `  P ) )  e.  ( F
" ( `' N `  P ) ) ,  ( H `  P
) ,  ( ( H `  P )  u.  { <. dom  ( H `  P ) ,  ( F `  ( `' N `  P ) ) >. } ) )  e.  _V )  -> 
( ( H `  P ) G ( `' N `  P ) )  =  if ( ( F `  ( `' N `  P ) )  e.  ( F
" ( `' N `  P ) ) ,  ( H `  P
) ,  ( ( H `  P )  u.  { <. dom  ( H `  P ) ,  ( F `  ( `' N `  P ) ) >. } ) ) )
7848, 49, 63, 77syl3anc 1249 . 2  |-  ( ph  ->  ( ( H `  P ) G ( `' N `  P ) )  =  if ( ( F `  ( `' N `  P ) )  e.  ( F
" ( `' N `  P ) ) ,  ( H `  P
) ,  ( ( H `  P )  u.  { <. dom  ( H `  P ) ,  ( F `  ( `' N `  P ) ) >. } ) ) )
7946, 78eqtrd 2229 1  |-  ( ph  ->  ( H `  ( P  +  1 ) )  =  if ( ( F `  ( `' N `  P ) )  e.  ( F
" ( `' N `  P ) ) ,  ( H `  P
) ,  ( ( H `  P )  u.  { <. dom  ( H `  P ) ,  ( F `  ( `' N `  P ) ) >. } ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4  DECID wdc 835    = wceq 1364    e. wcel 2167    =/= wne 2367   A.wral 2475   E.wrex 2476   {crab 2479   _Vcvv 2763    u. cun 3155   (/)c0 3451   ifcif 3562   {csn 3623   <.cop 3626    |-> cmpt 4095   suc csuc 4401   omcom 4627   `'ccnv 4663   dom cdm 4664   "cima 4667   -->wf 5255   -onto->wfo 5257   -1-1-onto->wf1o 5258   ` cfv 5259  (class class class)co 5925    e. cmpo 5927  freccfrec 6457    ^pm cpm 6717   0cc0 7896   1c1 7897    + caddc 7899    - cmin 8214   NN0cn0 9266   ZZcz 9343   ZZ>=cuz 9618    seqcseq 10556
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-0id 8004  ax-rnegex 8005  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-pm 6719  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-inn 9008  df-n0 9267  df-z 9344  df-uz 9619  df-seqfrec 10557
This theorem is referenced by:  ennnfonelem1  12649  ennnfonelemhdmp1  12651  ennnfonelemss  12652  ennnfonelemkh  12654  ennnfonelemhf1o  12655
  Copyright terms: Public domain W3C validator