| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ennnfonelemp1 | Unicode version | ||
| Description: Lemma for ennnfone 12996. Value of |
| Ref | Expression |
|---|---|
| ennnfonelemh.dceq |
|
| ennnfonelemh.f |
|
| ennnfonelemh.ne |
|
| ennnfonelemh.g |
|
| ennnfonelemh.n |
|
| ennnfonelemh.j |
|
| ennnfonelemh.h |
|
| ennnfonelemp1.p |
|
| Ref | Expression |
|---|---|
| ennnfonelemp1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ennnfonelemp1.p |
. . . . 5
| |
| 2 | nn0uz 9757 |
. . . . 5
| |
| 3 | 1, 2 | eleqtrdi 2322 |
. . . 4
|
| 4 | ennnfonelemh.dceq |
. . . . 5
| |
| 5 | ennnfonelemh.f |
. . . . 5
| |
| 6 | ennnfonelemh.ne |
. . . . 5
| |
| 7 | ennnfonelemh.g |
. . . . 5
| |
| 8 | ennnfonelemh.n |
. . . . 5
| |
| 9 | ennnfonelemh.j |
. . . . 5
| |
| 10 | ennnfonelemh.h |
. . . . 5
| |
| 11 | 4, 5, 6, 7, 8, 9, 10 | ennnfonelemj0 12972 |
. . . 4
|
| 12 | 4, 5, 6, 7, 8, 9, 10 | ennnfonelemg 12974 |
. . . 4
|
| 13 | 4, 5, 6, 7, 8, 9, 10 | ennnfonelemjn 12973 |
. . . 4
|
| 14 | 3, 11, 12, 13 | seqp1cd 10692 |
. . 3
|
| 15 | 10 | fveq1i 5628 |
. . . 4
|
| 16 | 15 | a1i 9 |
. . 3
|
| 17 | 10 | fveq1i 5628 |
. . . . 5
|
| 18 | 17 | a1i 9 |
. . . 4
|
| 19 | eqeq1 2236 |
. . . . . . 7
| |
| 20 | fvoveq1 6024 |
. . . . . . 7
| |
| 21 | 19, 20 | ifbieq2d 3627 |
. . . . . 6
|
| 22 | peano2nn0 9409 |
. . . . . . 7
| |
| 23 | 1, 22 | syl 14 |
. . . . . 6
|
| 24 | nn0p1gt0 9398 |
. . . . . . . . . . . 12
| |
| 25 | 24 | gt0ne0d 8659 |
. . . . . . . . . . 11
|
| 26 | 25 | neneqd 2421 |
. . . . . . . . . 10
|
| 27 | 26 | iffalsed 3612 |
. . . . . . . . 9
|
| 28 | nn0cn 9379 |
. . . . . . . . . . 11
| |
| 29 | 1cnd 8162 |
. . . . . . . . . . 11
| |
| 30 | 28, 29 | pncand 8458 |
. . . . . . . . . 10
|
| 31 | 30 | fveq2d 5631 |
. . . . . . . . 9
|
| 32 | 27, 31 | eqtrd 2262 |
. . . . . . . 8
|
| 33 | 8 | frechashgf1o 10650 |
. . . . . . . . . . 11
|
| 34 | f1ocnv 5585 |
. . . . . . . . . . 11
| |
| 35 | 33, 34 | ax-mp 5 |
. . . . . . . . . 10
|
| 36 | f1of 5572 |
. . . . . . . . . 10
| |
| 37 | 35, 36 | mp1i 10 |
. . . . . . . . 9
|
| 38 | id 19 |
. . . . . . . . 9
| |
| 39 | 37, 38 | ffvelcdmd 5771 |
. . . . . . . 8
|
| 40 | 32, 39 | eqeltrd 2306 |
. . . . . . 7
|
| 41 | 1, 40 | syl 14 |
. . . . . 6
|
| 42 | 9, 21, 23, 41 | fvmptd3 5728 |
. . . . 5
|
| 43 | 1, 32 | syl 14 |
. . . . 5
|
| 44 | 42, 43 | eqtr2d 2263 |
. . . 4
|
| 45 | 18, 44 | oveq12d 6019 |
. . 3
|
| 46 | 14, 16, 45 | 3eqtr4d 2272 |
. 2
|
| 47 | 4, 5, 6, 7, 8, 9, 10 | ennnfonelemh 12975 |
. . . 4
|
| 48 | 47, 1 | ffvelcdmd 5771 |
. . 3
|
| 49 | 1, 39 | syl 14 |
. . 3
|
| 50 | 48 | elexd 2813 |
. . . 4
|
| 51 | dmexg 4988 |
. . . . . . . 8
| |
| 52 | 50, 51 | syl 14 |
. . . . . . 7
|
| 53 | fof 5548 |
. . . . . . . . 9
| |
| 54 | 5, 53 | syl 14 |
. . . . . . . 8
|
| 55 | 54, 49 | ffvelcdmd 5771 |
. . . . . . 7
|
| 56 | opexg 4314 |
. . . . . . 7
| |
| 57 | 52, 55, 56 | syl2anc 411 |
. . . . . 6
|
| 58 | snexg 4268 |
. . . . . 6
| |
| 59 | 57, 58 | syl 14 |
. . . . 5
|
| 60 | unexg 4534 |
. . . . 5
| |
| 61 | 50, 59, 60 | syl2anc 411 |
. . . 4
|
| 62 | 4, 5, 49 | ennnfonelemdc 12970 |
. . . 4
|
| 63 | 50, 61, 62 | ifcldcd 3640 |
. . 3
|
| 64 | id 19 |
. . . . 5
| |
| 65 | dmeq 4923 |
. . . . . . . 8
| |
| 66 | 65 | opeq1d 3863 |
. . . . . . 7
|
| 67 | 66 | sneqd 3679 |
. . . . . 6
|
| 68 | 64, 67 | uneq12d 3359 |
. . . . 5
|
| 69 | 64, 68 | ifeq12d 3622 |
. . . 4
|
| 70 | fveq2 5627 |
. . . . . 6
| |
| 71 | imaeq2 5064 |
. . . . . 6
| |
| 72 | 70, 71 | eleq12d 2300 |
. . . . 5
|
| 73 | 70 | opeq2d 3864 |
. . . . . . 7
|
| 74 | 73 | sneqd 3679 |
. . . . . 6
|
| 75 | 74 | uneq2d 3358 |
. . . . 5
|
| 76 | 72, 75 | ifbieq2d 3627 |
. . . 4
|
| 77 | 69, 76, 7 | ovmpog 6139 |
. . 3
|
| 78 | 48, 49, 63, 77 | syl3anc 1271 |
. 2
|
| 79 | 46, 78 | eqtrd 2262 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 ax-cnex 8090 ax-resscn 8091 ax-1cn 8092 ax-1re 8093 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-addcom 8099 ax-addass 8101 ax-distr 8103 ax-i2m1 8104 ax-0lt1 8105 ax-0id 8107 ax-rnegex 8108 ax-cnre 8110 ax-pre-ltirr 8111 ax-pre-ltwlin 8112 ax-pre-lttrn 8113 ax-pre-ltadd 8115 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-iord 4457 df-on 4459 df-ilim 4460 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-riota 5954 df-ov 6004 df-oprab 6005 df-mpo 6006 df-1st 6286 df-2nd 6287 df-recs 6451 df-frec 6537 df-pm 6798 df-pnf 8183 df-mnf 8184 df-xr 8185 df-ltxr 8186 df-le 8187 df-sub 8319 df-neg 8320 df-inn 9111 df-n0 9370 df-z 9447 df-uz 9723 df-seqfrec 10670 |
| This theorem is referenced by: ennnfonelem1 12978 ennnfonelemhdmp1 12980 ennnfonelemss 12981 ennnfonelemkh 12983 ennnfonelemhf1o 12984 |
| Copyright terms: Public domain | W3C validator |