| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ennnfonelemp1 | Unicode version | ||
| Description: Lemma for ennnfone 12911. Value of |
| Ref | Expression |
|---|---|
| ennnfonelemh.dceq |
|
| ennnfonelemh.f |
|
| ennnfonelemh.ne |
|
| ennnfonelemh.g |
|
| ennnfonelemh.n |
|
| ennnfonelemh.j |
|
| ennnfonelemh.h |
|
| ennnfonelemp1.p |
|
| Ref | Expression |
|---|---|
| ennnfonelemp1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ennnfonelemp1.p |
. . . . 5
| |
| 2 | nn0uz 9718 |
. . . . 5
| |
| 3 | 1, 2 | eleqtrdi 2300 |
. . . 4
|
| 4 | ennnfonelemh.dceq |
. . . . 5
| |
| 5 | ennnfonelemh.f |
. . . . 5
| |
| 6 | ennnfonelemh.ne |
. . . . 5
| |
| 7 | ennnfonelemh.g |
. . . . 5
| |
| 8 | ennnfonelemh.n |
. . . . 5
| |
| 9 | ennnfonelemh.j |
. . . . 5
| |
| 10 | ennnfonelemh.h |
. . . . 5
| |
| 11 | 4, 5, 6, 7, 8, 9, 10 | ennnfonelemj0 12887 |
. . . 4
|
| 12 | 4, 5, 6, 7, 8, 9, 10 | ennnfonelemg 12889 |
. . . 4
|
| 13 | 4, 5, 6, 7, 8, 9, 10 | ennnfonelemjn 12888 |
. . . 4
|
| 14 | 3, 11, 12, 13 | seqp1cd 10652 |
. . 3
|
| 15 | 10 | fveq1i 5600 |
. . . 4
|
| 16 | 15 | a1i 9 |
. . 3
|
| 17 | 10 | fveq1i 5600 |
. . . . 5
|
| 18 | 17 | a1i 9 |
. . . 4
|
| 19 | eqeq1 2214 |
. . . . . . 7
| |
| 20 | fvoveq1 5990 |
. . . . . . 7
| |
| 21 | 19, 20 | ifbieq2d 3604 |
. . . . . 6
|
| 22 | peano2nn0 9370 |
. . . . . . 7
| |
| 23 | 1, 22 | syl 14 |
. . . . . 6
|
| 24 | nn0p1gt0 9359 |
. . . . . . . . . . . 12
| |
| 25 | 24 | gt0ne0d 8620 |
. . . . . . . . . . 11
|
| 26 | 25 | neneqd 2399 |
. . . . . . . . . 10
|
| 27 | 26 | iffalsed 3589 |
. . . . . . . . 9
|
| 28 | nn0cn 9340 |
. . . . . . . . . . 11
| |
| 29 | 1cnd 8123 |
. . . . . . . . . . 11
| |
| 30 | 28, 29 | pncand 8419 |
. . . . . . . . . 10
|
| 31 | 30 | fveq2d 5603 |
. . . . . . . . 9
|
| 32 | 27, 31 | eqtrd 2240 |
. . . . . . . 8
|
| 33 | 8 | frechashgf1o 10610 |
. . . . . . . . . . 11
|
| 34 | f1ocnv 5557 |
. . . . . . . . . . 11
| |
| 35 | 33, 34 | ax-mp 5 |
. . . . . . . . . 10
|
| 36 | f1of 5544 |
. . . . . . . . . 10
| |
| 37 | 35, 36 | mp1i 10 |
. . . . . . . . 9
|
| 38 | id 19 |
. . . . . . . . 9
| |
| 39 | 37, 38 | ffvelcdmd 5739 |
. . . . . . . 8
|
| 40 | 32, 39 | eqeltrd 2284 |
. . . . . . 7
|
| 41 | 1, 40 | syl 14 |
. . . . . 6
|
| 42 | 9, 21, 23, 41 | fvmptd3 5696 |
. . . . 5
|
| 43 | 1, 32 | syl 14 |
. . . . 5
|
| 44 | 42, 43 | eqtr2d 2241 |
. . . 4
|
| 45 | 18, 44 | oveq12d 5985 |
. . 3
|
| 46 | 14, 16, 45 | 3eqtr4d 2250 |
. 2
|
| 47 | 4, 5, 6, 7, 8, 9, 10 | ennnfonelemh 12890 |
. . . 4
|
| 48 | 47, 1 | ffvelcdmd 5739 |
. . 3
|
| 49 | 1, 39 | syl 14 |
. . 3
|
| 50 | 48 | elexd 2790 |
. . . 4
|
| 51 | dmexg 4961 |
. . . . . . . 8
| |
| 52 | 50, 51 | syl 14 |
. . . . . . 7
|
| 53 | fof 5520 |
. . . . . . . . 9
| |
| 54 | 5, 53 | syl 14 |
. . . . . . . 8
|
| 55 | 54, 49 | ffvelcdmd 5739 |
. . . . . . 7
|
| 56 | opexg 4290 |
. . . . . . 7
| |
| 57 | 52, 55, 56 | syl2anc 411 |
. . . . . 6
|
| 58 | snexg 4244 |
. . . . . 6
| |
| 59 | 57, 58 | syl 14 |
. . . . 5
|
| 60 | unexg 4508 |
. . . . 5
| |
| 61 | 50, 59, 60 | syl2anc 411 |
. . . 4
|
| 62 | 4, 5, 49 | ennnfonelemdc 12885 |
. . . 4
|
| 63 | 50, 61, 62 | ifcldcd 3617 |
. . 3
|
| 64 | id 19 |
. . . . 5
| |
| 65 | dmeq 4897 |
. . . . . . . 8
| |
| 66 | 65 | opeq1d 3839 |
. . . . . . 7
|
| 67 | 66 | sneqd 3656 |
. . . . . 6
|
| 68 | 64, 67 | uneq12d 3336 |
. . . . 5
|
| 69 | 64, 68 | ifeq12d 3599 |
. . . 4
|
| 70 | fveq2 5599 |
. . . . . 6
| |
| 71 | imaeq2 5037 |
. . . . . 6
| |
| 72 | 70, 71 | eleq12d 2278 |
. . . . 5
|
| 73 | 70 | opeq2d 3840 |
. . . . . . 7
|
| 74 | 73 | sneqd 3656 |
. . . . . 6
|
| 75 | 74 | uneq2d 3335 |
. . . . 5
|
| 76 | 72, 75 | ifbieq2d 3604 |
. . . 4
|
| 77 | 69, 76, 7 | ovmpog 6103 |
. . 3
|
| 78 | 48, 49, 63, 77 | syl3anc 1250 |
. 2
|
| 79 | 46, 78 | eqtrd 2240 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-iinf 4654 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-addcom 8060 ax-addass 8062 ax-distr 8064 ax-i2m1 8065 ax-0lt1 8066 ax-0id 8068 ax-rnegex 8069 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-ltadd 8076 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-if 3580 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-tr 4159 df-id 4358 df-iord 4431 df-on 4433 df-ilim 4434 df-suc 4436 df-iom 4657 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-recs 6414 df-frec 6500 df-pm 6761 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-sub 8280 df-neg 8281 df-inn 9072 df-n0 9331 df-z 9408 df-uz 9684 df-seqfrec 10630 |
| This theorem is referenced by: ennnfonelem1 12893 ennnfonelemhdmp1 12895 ennnfonelemss 12896 ennnfonelemkh 12898 ennnfonelemhf1o 12899 |
| Copyright terms: Public domain | W3C validator |