ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ennnfonelemp1 Unicode version

Theorem ennnfonelemp1 12892
Description: Lemma for ennnfone 12911. Value of  H at a successor. (Contributed by Jim Kingdon, 23-Jul-2023.)
Hypotheses
Ref Expression
ennnfonelemh.dceq  |-  ( ph  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y )
ennnfonelemh.f  |-  ( ph  ->  F : om -onto-> A
)
ennnfonelemh.ne  |-  ( ph  ->  A. n  e.  om  E. k  e.  om  A. j  e.  suc  n ( F `  k )  =/=  ( F `  j ) )
ennnfonelemh.g  |-  G  =  ( x  e.  ( A  ^pm  om ) ,  y  e.  om  |->  if ( ( F `  y )  e.  ( F " y ) ,  x ,  ( x  u.  { <. dom  x ,  ( F `
 y ) >. } ) ) )
ennnfonelemh.n  |-  N  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 )
ennnfonelemh.j  |-  J  =  ( x  e.  NN0  |->  if ( x  =  0 ,  (/) ,  ( `' N `  ( x  -  1 ) ) ) )
ennnfonelemh.h  |-  H  =  seq 0 ( G ,  J )
ennnfonelemp1.p  |-  ( ph  ->  P  e.  NN0 )
Assertion
Ref Expression
ennnfonelemp1  |-  ( ph  ->  ( H `  ( P  +  1 ) )  =  if ( ( F `  ( `' N `  P ) )  e.  ( F
" ( `' N `  P ) ) ,  ( H `  P
) ,  ( ( H `  P )  u.  { <. dom  ( H `  P ) ,  ( F `  ( `' N `  P ) ) >. } ) ) )
Distinct variable groups:    A, j, x, y    x, F, y   
j, G    x, H, y    j, J    x, N, y    P, j, x, y    ph, j, x, y
Allowed substitution hints:    ph( k, n)    A( k, n)    P( k, n)    F( j, k, n)    G( x, y, k, n)    H( j, k, n)    J( x, y, k, n)    N( j,
k, n)

Proof of Theorem ennnfonelemp1
Dummy variables  f  g are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ennnfonelemp1.p . . . . 5  |-  ( ph  ->  P  e.  NN0 )
2 nn0uz 9718 . . . . 5  |-  NN0  =  ( ZZ>= `  0 )
31, 2eleqtrdi 2300 . . . 4  |-  ( ph  ->  P  e.  ( ZZ>= ` 
0 ) )
4 ennnfonelemh.dceq . . . . 5  |-  ( ph  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y )
5 ennnfonelemh.f . . . . 5  |-  ( ph  ->  F : om -onto-> A
)
6 ennnfonelemh.ne . . . . 5  |-  ( ph  ->  A. n  e.  om  E. k  e.  om  A. j  e.  suc  n ( F `  k )  =/=  ( F `  j ) )
7 ennnfonelemh.g . . . . 5  |-  G  =  ( x  e.  ( A  ^pm  om ) ,  y  e.  om  |->  if ( ( F `  y )  e.  ( F " y ) ,  x ,  ( x  u.  { <. dom  x ,  ( F `
 y ) >. } ) ) )
8 ennnfonelemh.n . . . . 5  |-  N  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 )
9 ennnfonelemh.j . . . . 5  |-  J  =  ( x  e.  NN0  |->  if ( x  =  0 ,  (/) ,  ( `' N `  ( x  -  1 ) ) ) )
10 ennnfonelemh.h . . . . 5  |-  H  =  seq 0 ( G ,  J )
114, 5, 6, 7, 8, 9, 10ennnfonelemj0 12887 . . . 4  |-  ( ph  ->  ( J `  0
)  e.  { g  e.  ( A  ^pm  om )  |  dom  g  e.  om } )
124, 5, 6, 7, 8, 9, 10ennnfonelemg 12889 . . . 4  |-  ( (
ph  /\  ( f  e.  { g  e.  ( A  ^pm  om )  |  dom  g  e.  om }  /\  j  e.  om ) )  ->  (
f G j )  e.  { g  e.  ( A  ^pm  om )  |  dom  g  e.  om } )
134, 5, 6, 7, 8, 9, 10ennnfonelemjn 12888 . . . 4  |-  ( (
ph  /\  f  e.  ( ZZ>= `  ( 0  +  1 ) ) )  ->  ( J `  f )  e.  om )
143, 11, 12, 13seqp1cd 10652 . . 3  |-  ( ph  ->  (  seq 0 ( G ,  J ) `
 ( P  + 
1 ) )  =  ( (  seq 0
( G ,  J
) `  P ) G ( J `  ( P  +  1
) ) ) )
1510fveq1i 5600 . . . 4  |-  ( H `
 ( P  + 
1 ) )  =  (  seq 0 ( G ,  J ) `
 ( P  + 
1 ) )
1615a1i 9 . . 3  |-  ( ph  ->  ( H `  ( P  +  1 ) )  =  (  seq 0 ( G ,  J ) `  ( P  +  1 ) ) )
1710fveq1i 5600 . . . . 5  |-  ( H `
 P )  =  (  seq 0 ( G ,  J ) `
 P )
1817a1i 9 . . . 4  |-  ( ph  ->  ( H `  P
)  =  (  seq 0 ( G ,  J ) `  P
) )
19 eqeq1 2214 . . . . . . 7  |-  ( x  =  ( P  + 
1 )  ->  (
x  =  0  <->  ( P  +  1 )  =  0 ) )
20 fvoveq1 5990 . . . . . . 7  |-  ( x  =  ( P  + 
1 )  ->  ( `' N `  ( x  -  1 ) )  =  ( `' N `  ( ( P  + 
1 )  -  1 ) ) )
2119, 20ifbieq2d 3604 . . . . . 6  |-  ( x  =  ( P  + 
1 )  ->  if ( x  =  0 ,  (/) ,  ( `' N `  ( x  -  1 ) ) )  =  if ( ( P  +  1 )  =  0 ,  (/) ,  ( `' N `  ( ( P  + 
1 )  -  1 ) ) ) )
22 peano2nn0 9370 . . . . . . 7  |-  ( P  e.  NN0  ->  ( P  +  1 )  e. 
NN0 )
231, 22syl 14 . . . . . 6  |-  ( ph  ->  ( P  +  1 )  e.  NN0 )
24 nn0p1gt0 9359 . . . . . . . . . . . 12  |-  ( P  e.  NN0  ->  0  < 
( P  +  1 ) )
2524gt0ne0d 8620 . . . . . . . . . . 11  |-  ( P  e.  NN0  ->  ( P  +  1 )  =/=  0 )
2625neneqd 2399 . . . . . . . . . 10  |-  ( P  e.  NN0  ->  -.  ( P  +  1 )  =  0 )
2726iffalsed 3589 . . . . . . . . 9  |-  ( P  e.  NN0  ->  if ( ( P  +  1 )  =  0 ,  (/) ,  ( `' N `  ( ( P  + 
1 )  -  1 ) ) )  =  ( `' N `  ( ( P  + 
1 )  -  1 ) ) )
28 nn0cn 9340 . . . . . . . . . . 11  |-  ( P  e.  NN0  ->  P  e.  CC )
29 1cnd 8123 . . . . . . . . . . 11  |-  ( P  e.  NN0  ->  1  e.  CC )
3028, 29pncand 8419 . . . . . . . . . 10  |-  ( P  e.  NN0  ->  ( ( P  +  1 )  -  1 )  =  P )
3130fveq2d 5603 . . . . . . . . 9  |-  ( P  e.  NN0  ->  ( `' N `  ( ( P  +  1 )  -  1 ) )  =  ( `' N `  P ) )
3227, 31eqtrd 2240 . . . . . . . 8  |-  ( P  e.  NN0  ->  if ( ( P  +  1 )  =  0 ,  (/) ,  ( `' N `  ( ( P  + 
1 )  -  1 ) ) )  =  ( `' N `  P ) )
338frechashgf1o 10610 . . . . . . . . . . 11  |-  N : om
-1-1-onto-> NN0
34 f1ocnv 5557 . . . . . . . . . . 11  |-  ( N : om -1-1-onto-> NN0  ->  `' N : NN0
-1-1-onto-> om )
3533, 34ax-mp 5 . . . . . . . . . 10  |-  `' N : NN0
-1-1-onto-> om
36 f1of 5544 . . . . . . . . . 10  |-  ( `' N : NN0 -1-1-onto-> om  ->  `' N : NN0 --> om )
3735, 36mp1i 10 . . . . . . . . 9  |-  ( P  e.  NN0  ->  `' N : NN0 --> om )
38 id 19 . . . . . . . . 9  |-  ( P  e.  NN0  ->  P  e. 
NN0 )
3937, 38ffvelcdmd 5739 . . . . . . . 8  |-  ( P  e.  NN0  ->  ( `' N `  P )  e.  om )
4032, 39eqeltrd 2284 . . . . . . 7  |-  ( P  e.  NN0  ->  if ( ( P  +  1 )  =  0 ,  (/) ,  ( `' N `  ( ( P  + 
1 )  -  1 ) ) )  e. 
om )
411, 40syl 14 . . . . . 6  |-  ( ph  ->  if ( ( P  +  1 )  =  0 ,  (/) ,  ( `' N `  ( ( P  +  1 )  -  1 ) ) )  e.  om )
429, 21, 23, 41fvmptd3 5696 . . . . 5  |-  ( ph  ->  ( J `  ( P  +  1 ) )  =  if ( ( P  +  1 )  =  0 ,  (/) ,  ( `' N `  ( ( P  + 
1 )  -  1 ) ) ) )
431, 32syl 14 . . . . 5  |-  ( ph  ->  if ( ( P  +  1 )  =  0 ,  (/) ,  ( `' N `  ( ( P  +  1 )  -  1 ) ) )  =  ( `' N `  P ) )
4442, 43eqtr2d 2241 . . . 4  |-  ( ph  ->  ( `' N `  P )  =  ( J `  ( P  +  1 ) ) )
4518, 44oveq12d 5985 . . 3  |-  ( ph  ->  ( ( H `  P ) G ( `' N `  P ) )  =  ( (  seq 0 ( G ,  J ) `  P ) G ( J `  ( P  +  1 ) ) ) )
4614, 16, 453eqtr4d 2250 . 2  |-  ( ph  ->  ( H `  ( P  +  1 ) )  =  ( ( H `  P ) G ( `' N `  P ) ) )
474, 5, 6, 7, 8, 9, 10ennnfonelemh 12890 . . . 4  |-  ( ph  ->  H : NN0 --> ( A 
^pm  om ) )
4847, 1ffvelcdmd 5739 . . 3  |-  ( ph  ->  ( H `  P
)  e.  ( A 
^pm  om ) )
491, 39syl 14 . . 3  |-  ( ph  ->  ( `' N `  P )  e.  om )
5048elexd 2790 . . . 4  |-  ( ph  ->  ( H `  P
)  e.  _V )
51 dmexg 4961 . . . . . . . 8  |-  ( ( H `  P )  e.  _V  ->  dom  ( H `  P )  e.  _V )
5250, 51syl 14 . . . . . . 7  |-  ( ph  ->  dom  ( H `  P )  e.  _V )
53 fof 5520 . . . . . . . . 9  |-  ( F : om -onto-> A  ->  F : om --> A )
545, 53syl 14 . . . . . . . 8  |-  ( ph  ->  F : om --> A )
5554, 49ffvelcdmd 5739 . . . . . . 7  |-  ( ph  ->  ( F `  ( `' N `  P ) )  e.  A )
56 opexg 4290 . . . . . . 7  |-  ( ( dom  ( H `  P )  e.  _V  /\  ( F `  ( `' N `  P ) )  e.  A )  ->  <. dom  ( H `  P ) ,  ( F `  ( `' N `  P ) ) >.  e.  _V )
5752, 55, 56syl2anc 411 . . . . . 6  |-  ( ph  -> 
<. dom  ( H `  P ) ,  ( F `  ( `' N `  P ) ) >.  e.  _V )
58 snexg 4244 . . . . . 6  |-  ( <. dom  ( H `  P
) ,  ( F `
 ( `' N `  P ) ) >.  e.  _V  ->  { <. dom  ( H `  P ) ,  ( F `  ( `' N `  P ) ) >. }  e.  _V )
5957, 58syl 14 . . . . 5  |-  ( ph  ->  { <. dom  ( H `  P ) ,  ( F `  ( `' N `  P ) ) >. }  e.  _V )
60 unexg 4508 . . . . 5  |-  ( ( ( H `  P
)  e.  _V  /\  {
<. dom  ( H `  P ) ,  ( F `  ( `' N `  P ) ) >. }  e.  _V )  ->  ( ( H `
 P )  u. 
{ <. dom  ( H `  P ) ,  ( F `  ( `' N `  P ) ) >. } )  e. 
_V )
6150, 59, 60syl2anc 411 . . . 4  |-  ( ph  ->  ( ( H `  P )  u.  { <. dom  ( H `  P ) ,  ( F `  ( `' N `  P ) ) >. } )  e. 
_V )
624, 5, 49ennnfonelemdc 12885 . . . 4  |-  ( ph  -> DECID  ( F `  ( `' N `  P ) )  e.  ( F
" ( `' N `  P ) ) )
6350, 61, 62ifcldcd 3617 . . 3  |-  ( ph  ->  if ( ( F `
 ( `' N `  P ) )  e.  ( F " ( `' N `  P ) ) ,  ( H `
 P ) ,  ( ( H `  P )  u.  { <. dom  ( H `  P ) ,  ( F `  ( `' N `  P ) ) >. } ) )  e.  _V )
64 id 19 . . . . 5  |-  ( x  =  ( H `  P )  ->  x  =  ( H `  P ) )
65 dmeq 4897 . . . . . . . 8  |-  ( x  =  ( H `  P )  ->  dom  x  =  dom  ( H `
 P ) )
6665opeq1d 3839 . . . . . . 7  |-  ( x  =  ( H `  P )  ->  <. dom  x ,  ( F `  y ) >.  =  <. dom  ( H `  P
) ,  ( F `
 y ) >.
)
6766sneqd 3656 . . . . . 6  |-  ( x  =  ( H `  P )  ->  { <. dom  x ,  ( F `
 y ) >. }  =  { <. dom  ( H `  P ) ,  ( F `  y ) >. } )
6864, 67uneq12d 3336 . . . . 5  |-  ( x  =  ( H `  P )  ->  (
x  u.  { <. dom  x ,  ( F `
 y ) >. } )  =  ( ( H `  P
)  u.  { <. dom  ( H `  P
) ,  ( F `
 y ) >. } ) )
6964, 68ifeq12d 3599 . . . 4  |-  ( x  =  ( H `  P )  ->  if ( ( F `  y )  e.  ( F " y ) ,  x ,  ( x  u.  { <. dom  x ,  ( F `
 y ) >. } ) )  =  if ( ( F `
 y )  e.  ( F " y
) ,  ( H `
 P ) ,  ( ( H `  P )  u.  { <. dom  ( H `  P ) ,  ( F `  y )
>. } ) ) )
70 fveq2 5599 . . . . . 6  |-  ( y  =  ( `' N `  P )  ->  ( F `  y )  =  ( F `  ( `' N `  P ) ) )
71 imaeq2 5037 . . . . . 6  |-  ( y  =  ( `' N `  P )  ->  ( F " y )  =  ( F " ( `' N `  P ) ) )
7270, 71eleq12d 2278 . . . . 5  |-  ( y  =  ( `' N `  P )  ->  (
( F `  y
)  e.  ( F
" y )  <->  ( F `  ( `' N `  P ) )  e.  ( F " ( `' N `  P ) ) ) )
7370opeq2d 3840 . . . . . . 7  |-  ( y  =  ( `' N `  P )  ->  <. dom  ( H `  P ) ,  ( F `  y ) >.  =  <. dom  ( H `  P
) ,  ( F `
 ( `' N `  P ) ) >.
)
7473sneqd 3656 . . . . . 6  |-  ( y  =  ( `' N `  P )  ->  { <. dom  ( H `  P
) ,  ( F `
 y ) >. }  =  { <. dom  ( H `  P ) ,  ( F `  ( `' N `  P ) ) >. } )
7574uneq2d 3335 . . . . 5  |-  ( y  =  ( `' N `  P )  ->  (
( H `  P
)  u.  { <. dom  ( H `  P
) ,  ( F `
 y ) >. } )  =  ( ( H `  P
)  u.  { <. dom  ( H `  P
) ,  ( F `
 ( `' N `  P ) ) >. } ) )
7672, 75ifbieq2d 3604 . . . 4  |-  ( y  =  ( `' N `  P )  ->  if ( ( F `  y )  e.  ( F " y ) ,  ( H `  P ) ,  ( ( H `  P
)  u.  { <. dom  ( H `  P
) ,  ( F `
 y ) >. } ) )  =  if ( ( F `
 ( `' N `  P ) )  e.  ( F " ( `' N `  P ) ) ,  ( H `
 P ) ,  ( ( H `  P )  u.  { <. dom  ( H `  P ) ,  ( F `  ( `' N `  P ) ) >. } ) ) )
7769, 76, 7ovmpog 6103 . . 3  |-  ( ( ( H `  P
)  e.  ( A 
^pm  om )  /\  ( `' N `  P )  e.  om  /\  if ( ( F `  ( `' N `  P ) )  e.  ( F
" ( `' N `  P ) ) ,  ( H `  P
) ,  ( ( H `  P )  u.  { <. dom  ( H `  P ) ,  ( F `  ( `' N `  P ) ) >. } ) )  e.  _V )  -> 
( ( H `  P ) G ( `' N `  P ) )  =  if ( ( F `  ( `' N `  P ) )  e.  ( F
" ( `' N `  P ) ) ,  ( H `  P
) ,  ( ( H `  P )  u.  { <. dom  ( H `  P ) ,  ( F `  ( `' N `  P ) ) >. } ) ) )
7848, 49, 63, 77syl3anc 1250 . 2  |-  ( ph  ->  ( ( H `  P ) G ( `' N `  P ) )  =  if ( ( F `  ( `' N `  P ) )  e.  ( F
" ( `' N `  P ) ) ,  ( H `  P
) ,  ( ( H `  P )  u.  { <. dom  ( H `  P ) ,  ( F `  ( `' N `  P ) ) >. } ) ) )
7946, 78eqtrd 2240 1  |-  ( ph  ->  ( H `  ( P  +  1 ) )  =  if ( ( F `  ( `' N `  P ) )  e.  ( F
" ( `' N `  P ) ) ,  ( H `  P
) ,  ( ( H `  P )  u.  { <. dom  ( H `  P ) ,  ( F `  ( `' N `  P ) ) >. } ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4  DECID wdc 836    = wceq 1373    e. wcel 2178    =/= wne 2378   A.wral 2486   E.wrex 2487   {crab 2490   _Vcvv 2776    u. cun 3172   (/)c0 3468   ifcif 3579   {csn 3643   <.cop 3646    |-> cmpt 4121   suc csuc 4430   omcom 4656   `'ccnv 4692   dom cdm 4693   "cima 4696   -->wf 5286   -onto->wfo 5288   -1-1-onto->wf1o 5289   ` cfv 5290  (class class class)co 5967    e. cmpo 5969  freccfrec 6499    ^pm cpm 6759   0cc0 7960   1c1 7961    + caddc 7963    - cmin 8278   NN0cn0 9330   ZZcz 9407   ZZ>=cuz 9683    seqcseq 10629
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-addass 8062  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-0id 8068  ax-rnegex 8069  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-ltadd 8076
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-iord 4431  df-on 4433  df-ilim 4434  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-frec 6500  df-pm 6761  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-inn 9072  df-n0 9331  df-z 9408  df-uz 9684  df-seqfrec 10630
This theorem is referenced by:  ennnfonelem1  12893  ennnfonelemhdmp1  12895  ennnfonelemss  12896  ennnfonelemkh  12898  ennnfonelemhf1o  12899
  Copyright terms: Public domain W3C validator