ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulgpropdg Unicode version

Theorem mulgpropdg 13500
Description: Two structures with the same group-nature have the same group multiple function.  K is expected to either be  _V (when strong equality is available) or  B (when closure is available). (Contributed by Stefan O'Rear, 21-Mar-2015.) (Revised by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
mulgpropdg.m  |-  ( ph  ->  .x.  =  (.g `  G
) )
mulgpropdg.n  |-  ( ph  ->  .X.  =  (.g `  H
) )
mulgpropdg.g  |-  ( ph  ->  G  e.  V )
mulgpropdg.h  |-  ( ph  ->  H  e.  W )
mulgpropd.b1  |-  ( ph  ->  B  =  ( Base `  G ) )
mulgpropd.b2  |-  ( ph  ->  B  =  ( Base `  H ) )
mulgpropd.i  |-  ( ph  ->  B  C_  K )
mulgpropd.k  |-  ( (
ph  /\  ( x  e.  K  /\  y  e.  K ) )  -> 
( x ( +g  `  G ) y )  e.  K )
mulgpropd.e  |-  ( (
ph  /\  ( x  e.  K  /\  y  e.  K ) )  -> 
( x ( +g  `  G ) y )  =  ( x ( +g  `  H ) y ) )
Assertion
Ref Expression
mulgpropdg  |-  ( ph  ->  .x.  =  .X.  )
Distinct variable groups:    ph, x, y   
x, B, y    x, G, y    x, H, y   
x, K, y
Allowed substitution hints:    .x. ( x, y)    .X. (
x, y)    V( x, y)    W( x, y)

Proof of Theorem mulgpropdg
Dummy variables  a  b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mulgpropd.b1 . . . . . . 7  |-  ( ph  ->  B  =  ( Base `  G ) )
2 mulgpropd.b2 . . . . . . 7  |-  ( ph  ->  B  =  ( Base `  H ) )
3 mulgpropdg.g . . . . . . 7  |-  ( ph  ->  G  e.  V )
4 mulgpropdg.h . . . . . . 7  |-  ( ph  ->  H  e.  W )
5 mulgpropd.i . . . . . . . . . 10  |-  ( ph  ->  B  C_  K )
6 ssel 3187 . . . . . . . . . . 11  |-  ( B 
C_  K  ->  (
x  e.  B  ->  x  e.  K )
)
7 ssel 3187 . . . . . . . . . . 11  |-  ( B 
C_  K  ->  (
y  e.  B  -> 
y  e.  K ) )
86, 7anim12d 335 . . . . . . . . . 10  |-  ( B 
C_  K  ->  (
( x  e.  B  /\  y  e.  B
)  ->  ( x  e.  K  /\  y  e.  K ) ) )
95, 8syl 14 . . . . . . . . 9  |-  ( ph  ->  ( ( x  e.  B  /\  y  e.  B )  ->  (
x  e.  K  /\  y  e.  K )
) )
109imp 124 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x  e.  K  /\  y  e.  K
) )
11 mulgpropd.e . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  K  /\  y  e.  K ) )  -> 
( x ( +g  `  G ) y )  =  ( x ( +g  `  H ) y ) )
1210, 11syldan 282 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( +g  `  G ) y )  =  ( x ( +g  `  H ) y ) )
131, 2, 3, 4, 12grpidpropdg 13206 . . . . . 6  |-  ( ph  ->  ( 0g `  G
)  =  ( 0g
`  H ) )
14133ad2ant1 1021 . . . . 5  |-  ( (
ph  /\  a  e.  ZZ  /\  b  e.  B
)  ->  ( 0g `  G )  =  ( 0g `  H ) )
15 1zzd 9399 . . . . . . . 8  |-  ( (
ph  /\  a  e.  ZZ  /\  b  e.  B
)  ->  1  e.  ZZ )
16 nnuz 9684 . . . . . . . . 9  |-  NN  =  ( ZZ>= `  1 )
1753ad2ant1 1021 . . . . . . . . . 10  |-  ( (
ph  /\  a  e.  ZZ  /\  b  e.  B
)  ->  B  C_  K
)
18 simp3 1002 . . . . . . . . . 10  |-  ( (
ph  /\  a  e.  ZZ  /\  b  e.  B
)  ->  b  e.  B )
1917, 18sseldd 3194 . . . . . . . . 9  |-  ( (
ph  /\  a  e.  ZZ  /\  b  e.  B
)  ->  b  e.  K )
2016, 19ialgrlemconst 12365 . . . . . . . 8  |-  ( ( ( ph  /\  a  e.  ZZ  /\  b  e.  B )  /\  x  e.  ( ZZ>= `  1 )
)  ->  ( ( NN  X.  { b } ) `  x )  e.  K )
21 mulgpropd.k . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  K  /\  y  e.  K ) )  -> 
( x ( +g  `  G ) y )  e.  K )
22213ad2antl1 1162 . . . . . . . 8  |-  ( ( ( ph  /\  a  e.  ZZ  /\  b  e.  B )  /\  (
x  e.  K  /\  y  e.  K )
)  ->  ( x
( +g  `  G ) y )  e.  K
)
23113ad2antl1 1162 . . . . . . . 8  |-  ( ( ( ph  /\  a  e.  ZZ  /\  b  e.  B )  /\  (
x  e.  K  /\  y  e.  K )
)  ->  ( x
( +g  `  G ) y )  =  ( x ( +g  `  H
) y ) )
2415, 20, 22, 23seqfeq3 10674 . . . . . . 7  |-  ( (
ph  /\  a  e.  ZZ  /\  b  e.  B
)  ->  seq 1
( ( +g  `  G
) ,  ( NN 
X.  { b } ) )  =  seq 1 ( ( +g  `  H ) ,  ( NN  X.  { b } ) ) )
2524fveq1d 5578 . . . . . 6  |-  ( (
ph  /\  a  e.  ZZ  /\  b  e.  B
)  ->  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { b } ) ) `  a )  =  (  seq 1 ( ( +g  `  H ) ,  ( NN  X.  { b } ) ) `  a ) )
261, 2, 3, 4, 12grpinvpropdg 13407 . . . . . . . 8  |-  ( ph  ->  ( invg `  G )  =  ( invg `  H
) )
27263ad2ant1 1021 . . . . . . 7  |-  ( (
ph  /\  a  e.  ZZ  /\  b  e.  B
)  ->  ( invg `  G )  =  ( invg `  H ) )
2824fveq1d 5578 . . . . . . 7  |-  ( (
ph  /\  a  e.  ZZ  /\  b  e.  B
)  ->  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { b } ) ) `  -u a )  =  (  seq 1 ( ( +g  `  H ) ,  ( NN  X.  { b } ) ) `  -u a
) )
2927, 28fveq12d 5583 . . . . . 6  |-  ( (
ph  /\  a  e.  ZZ  /\  b  e.  B
)  ->  ( ( invg `  G ) `
 (  seq 1
( ( +g  `  G
) ,  ( NN 
X.  { b } ) ) `  -u a
) )  =  ( ( invg `  H ) `  (  seq 1 ( ( +g  `  H ) ,  ( NN  X.  { b } ) ) `  -u a ) ) )
3025, 29ifeq12d 3590 . . . . 5  |-  ( (
ph  /\  a  e.  ZZ  /\  b  e.  B
)  ->  if (
0  <  a , 
(  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { b } ) ) `  a ) ,  ( ( invg `  G ) `
 (  seq 1
( ( +g  `  G
) ,  ( NN 
X.  { b } ) ) `  -u a
) ) )  =  if ( 0  < 
a ,  (  seq 1 ( ( +g  `  H ) ,  ( NN  X.  { b } ) ) `  a ) ,  ( ( invg `  H ) `  (  seq 1 ( ( +g  `  H ) ,  ( NN  X.  { b } ) ) `  -u a ) ) ) )
3114, 30ifeq12d 3590 . . . 4  |-  ( (
ph  /\  a  e.  ZZ  /\  b  e.  B
)  ->  if (
a  =  0 ,  ( 0g `  G
) ,  if ( 0  <  a ,  (  seq 1 ( ( +g  `  G
) ,  ( NN 
X.  { b } ) ) `  a
) ,  ( ( invg `  G
) `  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { b } ) ) `  -u a ) ) ) )  =  if ( a  =  0 ,  ( 0g `  H
) ,  if ( 0  <  a ,  (  seq 1 ( ( +g  `  H
) ,  ( NN 
X.  { b } ) ) `  a
) ,  ( ( invg `  H
) `  (  seq 1 ( ( +g  `  H ) ,  ( NN  X.  { b } ) ) `  -u a ) ) ) ) )
3231mpoeq3dva 6009 . . 3  |-  ( ph  ->  ( a  e.  ZZ ,  b  e.  B  |->  if ( a  =  0 ,  ( 0g
`  G ) ,  if ( 0  < 
a ,  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { b } ) ) `  a ) ,  ( ( invg `  G ) `  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { b } ) ) `  -u a ) ) ) ) )  =  ( a  e.  ZZ , 
b  e.  B  |->  if ( a  =  0 ,  ( 0g `  H ) ,  if ( 0  <  a ,  (  seq 1
( ( +g  `  H
) ,  ( NN 
X.  { b } ) ) `  a
) ,  ( ( invg `  H
) `  (  seq 1 ( ( +g  `  H ) ,  ( NN  X.  { b } ) ) `  -u a ) ) ) ) ) )
33 eqidd 2206 . . . 4  |-  ( ph  ->  ZZ  =  ZZ )
34 eqidd 2206 . . . 4  |-  ( ph  ->  if ( a  =  0 ,  ( 0g
`  G ) ,  if ( 0  < 
a ,  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { b } ) ) `  a ) ,  ( ( invg `  G ) `  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { b } ) ) `  -u a ) ) ) )  =  if ( a  =  0 ,  ( 0g `  G
) ,  if ( 0  <  a ,  (  seq 1 ( ( +g  `  G
) ,  ( NN 
X.  { b } ) ) `  a
) ,  ( ( invg `  G
) `  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { b } ) ) `  -u a ) ) ) ) )
3533, 1, 34mpoeq123dv 6007 . . 3  |-  ( ph  ->  ( a  e.  ZZ ,  b  e.  B  |->  if ( a  =  0 ,  ( 0g
`  G ) ,  if ( 0  < 
a ,  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { b } ) ) `  a ) ,  ( ( invg `  G ) `  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { b } ) ) `  -u a ) ) ) ) )  =  ( a  e.  ZZ , 
b  e.  ( Base `  G )  |->  if ( a  =  0 ,  ( 0g `  G
) ,  if ( 0  <  a ,  (  seq 1 ( ( +g  `  G
) ,  ( NN 
X.  { b } ) ) `  a
) ,  ( ( invg `  G
) `  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { b } ) ) `  -u a ) ) ) ) ) )
36 eqidd 2206 . . . 4  |-  ( ph  ->  if ( a  =  0 ,  ( 0g
`  H ) ,  if ( 0  < 
a ,  (  seq 1 ( ( +g  `  H ) ,  ( NN  X.  { b } ) ) `  a ) ,  ( ( invg `  H ) `  (  seq 1 ( ( +g  `  H ) ,  ( NN  X.  { b } ) ) `  -u a ) ) ) )  =  if ( a  =  0 ,  ( 0g `  H
) ,  if ( 0  <  a ,  (  seq 1 ( ( +g  `  H
) ,  ( NN 
X.  { b } ) ) `  a
) ,  ( ( invg `  H
) `  (  seq 1 ( ( +g  `  H ) ,  ( NN  X.  { b } ) ) `  -u a ) ) ) ) )
3733, 2, 36mpoeq123dv 6007 . . 3  |-  ( ph  ->  ( a  e.  ZZ ,  b  e.  B  |->  if ( a  =  0 ,  ( 0g
`  H ) ,  if ( 0  < 
a ,  (  seq 1 ( ( +g  `  H ) ,  ( NN  X.  { b } ) ) `  a ) ,  ( ( invg `  H ) `  (  seq 1 ( ( +g  `  H ) ,  ( NN  X.  { b } ) ) `  -u a ) ) ) ) )  =  ( a  e.  ZZ , 
b  e.  ( Base `  H )  |->  if ( a  =  0 ,  ( 0g `  H
) ,  if ( 0  <  a ,  (  seq 1 ( ( +g  `  H
) ,  ( NN 
X.  { b } ) ) `  a
) ,  ( ( invg `  H
) `  (  seq 1 ( ( +g  `  H ) ,  ( NN  X.  { b } ) ) `  -u a ) ) ) ) ) )
3832, 35, 373eqtr3d 2246 . 2  |-  ( ph  ->  ( a  e.  ZZ ,  b  e.  ( Base `  G )  |->  if ( a  =  0 ,  ( 0g `  G ) ,  if ( 0  <  a ,  (  seq 1
( ( +g  `  G
) ,  ( NN 
X.  { b } ) ) `  a
) ,  ( ( invg `  G
) `  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { b } ) ) `  -u a ) ) ) ) )  =  ( a  e.  ZZ , 
b  e.  ( Base `  H )  |->  if ( a  =  0 ,  ( 0g `  H
) ,  if ( 0  <  a ,  (  seq 1 ( ( +g  `  H
) ,  ( NN 
X.  { b } ) ) `  a
) ,  ( ( invg `  H
) `  (  seq 1 ( ( +g  `  H ) ,  ( NN  X.  { b } ) ) `  -u a ) ) ) ) ) )
39 mulgpropdg.m . . 3  |-  ( ph  ->  .x.  =  (.g `  G
) )
40 eqid 2205 . . . . 5  |-  ( Base `  G )  =  (
Base `  G )
41 eqid 2205 . . . . 5  |-  ( +g  `  G )  =  ( +g  `  G )
42 eqid 2205 . . . . 5  |-  ( 0g
`  G )  =  ( 0g `  G
)
43 eqid 2205 . . . . 5  |-  ( invg `  G )  =  ( invg `  G )
44 eqid 2205 . . . . 5  |-  (.g `  G
)  =  (.g `  G
)
4540, 41, 42, 43, 44mulgfvalg 13457 . . . 4  |-  ( G  e.  V  ->  (.g `  G )  =  ( a  e.  ZZ , 
b  e.  ( Base `  G )  |->  if ( a  =  0 ,  ( 0g `  G
) ,  if ( 0  <  a ,  (  seq 1 ( ( +g  `  G
) ,  ( NN 
X.  { b } ) ) `  a
) ,  ( ( invg `  G
) `  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { b } ) ) `  -u a ) ) ) ) ) )
463, 45syl 14 . . 3  |-  ( ph  ->  (.g `  G )  =  ( a  e.  ZZ ,  b  e.  ( Base `  G )  |->  if ( a  =  0 ,  ( 0g `  G ) ,  if ( 0  <  a ,  (  seq 1
( ( +g  `  G
) ,  ( NN 
X.  { b } ) ) `  a
) ,  ( ( invg `  G
) `  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { b } ) ) `  -u a ) ) ) ) ) )
4739, 46eqtrd 2238 . 2  |-  ( ph  ->  .x.  =  ( a  e.  ZZ ,  b  e.  ( Base `  G
)  |->  if ( a  =  0 ,  ( 0g `  G ) ,  if ( 0  <  a ,  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { b } ) ) `  a ) ,  ( ( invg `  G ) `
 (  seq 1
( ( +g  `  G
) ,  ( NN 
X.  { b } ) ) `  -u a
) ) ) ) ) )
48 mulgpropdg.n . . 3  |-  ( ph  ->  .X.  =  (.g `  H
) )
49 eqid 2205 . . . . 5  |-  ( Base `  H )  =  (
Base `  H )
50 eqid 2205 . . . . 5  |-  ( +g  `  H )  =  ( +g  `  H )
51 eqid 2205 . . . . 5  |-  ( 0g
`  H )  =  ( 0g `  H
)
52 eqid 2205 . . . . 5  |-  ( invg `  H )  =  ( invg `  H )
53 eqid 2205 . . . . 5  |-  (.g `  H
)  =  (.g `  H
)
5449, 50, 51, 52, 53mulgfvalg 13457 . . . 4  |-  ( H  e.  W  ->  (.g `  H )  =  ( a  e.  ZZ , 
b  e.  ( Base `  H )  |->  if ( a  =  0 ,  ( 0g `  H
) ,  if ( 0  <  a ,  (  seq 1 ( ( +g  `  H
) ,  ( NN 
X.  { b } ) ) `  a
) ,  ( ( invg `  H
) `  (  seq 1 ( ( +g  `  H ) ,  ( NN  X.  { b } ) ) `  -u a ) ) ) ) ) )
554, 54syl 14 . . 3  |-  ( ph  ->  (.g `  H )  =  ( a  e.  ZZ ,  b  e.  ( Base `  H )  |->  if ( a  =  0 ,  ( 0g `  H ) ,  if ( 0  <  a ,  (  seq 1
( ( +g  `  H
) ,  ( NN 
X.  { b } ) ) `  a
) ,  ( ( invg `  H
) `  (  seq 1 ( ( +g  `  H ) ,  ( NN  X.  { b } ) ) `  -u a ) ) ) ) ) )
5648, 55eqtrd 2238 . 2  |-  ( ph  ->  .X.  =  ( a  e.  ZZ ,  b  e.  ( Base `  H
)  |->  if ( a  =  0 ,  ( 0g `  H ) ,  if ( 0  <  a ,  (  seq 1 ( ( +g  `  H ) ,  ( NN  X.  { b } ) ) `  a ) ,  ( ( invg `  H ) `
 (  seq 1
( ( +g  `  H
) ,  ( NN 
X.  { b } ) ) `  -u a
) ) ) ) ) )
5738, 47, 563eqtr4d 2248 1  |-  ( ph  ->  .x.  =  .X.  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 981    = wceq 1373    e. wcel 2176    C_ wss 3166   ifcif 3571   {csn 3633   class class class wbr 4044    X. cxp 4673   ` cfv 5271  (class class class)co 5944    e. cmpo 5946   0cc0 7925   1c1 7926    < clt 8107   -ucneg 8244   NNcn 9036   ZZcz 9372    seqcseq 10592   Basecbs 12832   +g cplusg 12909   0gc0g 13088   invgcminusg 13333  .gcmg 13455
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-addcom 8025  ax-addass 8027  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-0id 8033  ax-rnegex 8034  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-ltadd 8041
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-iord 4413  df-on 4415  df-ilim 4416  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-recs 6391  df-frec 6477  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-inn 9037  df-n0 9296  df-z 9373  df-uz 9649  df-seqfrec 10593  df-ndx 12835  df-slot 12836  df-base 12838  df-0g 13090  df-minusg 13336  df-mulg 13456
This theorem is referenced by:  mulgass3  13847
  Copyright terms: Public domain W3C validator