| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mulgpropdg | Unicode version | ||
| Description: Two structures with the
same group-nature have the same group multiple
function. |
| Ref | Expression |
|---|---|
| mulgpropdg.m |
|
| mulgpropdg.n |
|
| mulgpropdg.g |
|
| mulgpropdg.h |
|
| mulgpropd.b1 |
|
| mulgpropd.b2 |
|
| mulgpropd.i |
|
| mulgpropd.k |
|
| mulgpropd.e |
|
| Ref | Expression |
|---|---|
| mulgpropdg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulgpropd.b1 |
. . . . . . 7
| |
| 2 | mulgpropd.b2 |
. . . . . . 7
| |
| 3 | mulgpropdg.g |
. . . . . . 7
| |
| 4 | mulgpropdg.h |
. . . . . . 7
| |
| 5 | mulgpropd.i |
. . . . . . . . . 10
| |
| 6 | ssel 3195 |
. . . . . . . . . . 11
| |
| 7 | ssel 3195 |
. . . . . . . . . . 11
| |
| 8 | 6, 7 | anim12d 335 |
. . . . . . . . . 10
|
| 9 | 5, 8 | syl 14 |
. . . . . . . . 9
|
| 10 | 9 | imp 124 |
. . . . . . . 8
|
| 11 | mulgpropd.e |
. . . . . . . 8
| |
| 12 | 10, 11 | syldan 282 |
. . . . . . 7
|
| 13 | 1, 2, 3, 4, 12 | grpidpropdg 13321 |
. . . . . 6
|
| 14 | 13 | 3ad2ant1 1021 |
. . . . 5
|
| 15 | 1zzd 9434 |
. . . . . . . 8
| |
| 16 | nnuz 9719 |
. . . . . . . . 9
| |
| 17 | 5 | 3ad2ant1 1021 |
. . . . . . . . . 10
|
| 18 | simp3 1002 |
. . . . . . . . . 10
| |
| 19 | 17, 18 | sseldd 3202 |
. . . . . . . . 9
|
| 20 | 16, 19 | ialgrlemconst 12480 |
. . . . . . . 8
|
| 21 | mulgpropd.k |
. . . . . . . . 9
| |
| 22 | 21 | 3ad2antl1 1162 |
. . . . . . . 8
|
| 23 | 11 | 3ad2antl1 1162 |
. . . . . . . 8
|
| 24 | 15, 20, 22, 23 | seqfeq3 10711 |
. . . . . . 7
|
| 25 | 24 | fveq1d 5601 |
. . . . . 6
|
| 26 | 1, 2, 3, 4, 12 | grpinvpropdg 13522 |
. . . . . . . 8
|
| 27 | 26 | 3ad2ant1 1021 |
. . . . . . 7
|
| 28 | 24 | fveq1d 5601 |
. . . . . . 7
|
| 29 | 27, 28 | fveq12d 5606 |
. . . . . 6
|
| 30 | 25, 29 | ifeq12d 3599 |
. . . . 5
|
| 31 | 14, 30 | ifeq12d 3599 |
. . . 4
|
| 32 | 31 | mpoeq3dva 6032 |
. . 3
|
| 33 | eqidd 2208 |
. . . 4
| |
| 34 | eqidd 2208 |
. . . 4
| |
| 35 | 33, 1, 34 | mpoeq123dv 6030 |
. . 3
|
| 36 | eqidd 2208 |
. . . 4
| |
| 37 | 33, 2, 36 | mpoeq123dv 6030 |
. . 3
|
| 38 | 32, 35, 37 | 3eqtr3d 2248 |
. 2
|
| 39 | mulgpropdg.m |
. . 3
| |
| 40 | eqid 2207 |
. . . . 5
| |
| 41 | eqid 2207 |
. . . . 5
| |
| 42 | eqid 2207 |
. . . . 5
| |
| 43 | eqid 2207 |
. . . . 5
| |
| 44 | eqid 2207 |
. . . . 5
| |
| 45 | 40, 41, 42, 43, 44 | mulgfvalg 13572 |
. . . 4
|
| 46 | 3, 45 | syl 14 |
. . 3
|
| 47 | 39, 46 | eqtrd 2240 |
. 2
|
| 48 | mulgpropdg.n |
. . 3
| |
| 49 | eqid 2207 |
. . . . 5
| |
| 50 | eqid 2207 |
. . . . 5
| |
| 51 | eqid 2207 |
. . . . 5
| |
| 52 | eqid 2207 |
. . . . 5
| |
| 53 | eqid 2207 |
. . . . 5
| |
| 54 | 49, 50, 51, 52, 53 | mulgfvalg 13572 |
. . . 4
|
| 55 | 4, 54 | syl 14 |
. . 3
|
| 56 | 48, 55 | eqtrd 2240 |
. 2
|
| 57 | 38, 47, 56 | 3eqtr4d 2250 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-iinf 4654 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-addcom 8060 ax-addass 8062 ax-distr 8064 ax-i2m1 8065 ax-0lt1 8066 ax-0id 8068 ax-rnegex 8069 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-ltadd 8076 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-if 3580 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-tr 4159 df-id 4358 df-iord 4431 df-on 4433 df-ilim 4434 df-suc 4436 df-iom 4657 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-recs 6414 df-frec 6500 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-sub 8280 df-neg 8281 df-inn 9072 df-n0 9331 df-z 9408 df-uz 9684 df-seqfrec 10630 df-ndx 12950 df-slot 12951 df-base 12953 df-0g 13205 df-minusg 13451 df-mulg 13571 |
| This theorem is referenced by: mulgass3 13962 |
| Copyright terms: Public domain | W3C validator |