ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulgpropdg Unicode version

Theorem mulgpropdg 13701
Description: Two structures with the same group-nature have the same group multiple function.  K is expected to either be  _V (when strong equality is available) or  B (when closure is available). (Contributed by Stefan O'Rear, 21-Mar-2015.) (Revised by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
mulgpropdg.m  |-  ( ph  ->  .x.  =  (.g `  G
) )
mulgpropdg.n  |-  ( ph  ->  .X.  =  (.g `  H
) )
mulgpropdg.g  |-  ( ph  ->  G  e.  V )
mulgpropdg.h  |-  ( ph  ->  H  e.  W )
mulgpropd.b1  |-  ( ph  ->  B  =  ( Base `  G ) )
mulgpropd.b2  |-  ( ph  ->  B  =  ( Base `  H ) )
mulgpropd.i  |-  ( ph  ->  B  C_  K )
mulgpropd.k  |-  ( (
ph  /\  ( x  e.  K  /\  y  e.  K ) )  -> 
( x ( +g  `  G ) y )  e.  K )
mulgpropd.e  |-  ( (
ph  /\  ( x  e.  K  /\  y  e.  K ) )  -> 
( x ( +g  `  G ) y )  =  ( x ( +g  `  H ) y ) )
Assertion
Ref Expression
mulgpropdg  |-  ( ph  ->  .x.  =  .X.  )
Distinct variable groups:    ph, x, y   
x, B, y    x, G, y    x, H, y   
x, K, y
Allowed substitution hints:    .x. ( x, y)    .X. (
x, y)    V( x, y)    W( x, y)

Proof of Theorem mulgpropdg
Dummy variables  a  b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mulgpropd.b1 . . . . . . 7  |-  ( ph  ->  B  =  ( Base `  G ) )
2 mulgpropd.b2 . . . . . . 7  |-  ( ph  ->  B  =  ( Base `  H ) )
3 mulgpropdg.g . . . . . . 7  |-  ( ph  ->  G  e.  V )
4 mulgpropdg.h . . . . . . 7  |-  ( ph  ->  H  e.  W )
5 mulgpropd.i . . . . . . . . . 10  |-  ( ph  ->  B  C_  K )
6 ssel 3218 . . . . . . . . . . 11  |-  ( B 
C_  K  ->  (
x  e.  B  ->  x  e.  K )
)
7 ssel 3218 . . . . . . . . . . 11  |-  ( B 
C_  K  ->  (
y  e.  B  -> 
y  e.  K ) )
86, 7anim12d 335 . . . . . . . . . 10  |-  ( B 
C_  K  ->  (
( x  e.  B  /\  y  e.  B
)  ->  ( x  e.  K  /\  y  e.  K ) ) )
95, 8syl 14 . . . . . . . . 9  |-  ( ph  ->  ( ( x  e.  B  /\  y  e.  B )  ->  (
x  e.  K  /\  y  e.  K )
) )
109imp 124 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x  e.  K  /\  y  e.  K
) )
11 mulgpropd.e . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  K  /\  y  e.  K ) )  -> 
( x ( +g  `  G ) y )  =  ( x ( +g  `  H ) y ) )
1210, 11syldan 282 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( +g  `  G ) y )  =  ( x ( +g  `  H ) y ) )
131, 2, 3, 4, 12grpidpropdg 13407 . . . . . 6  |-  ( ph  ->  ( 0g `  G
)  =  ( 0g
`  H ) )
14133ad2ant1 1042 . . . . 5  |-  ( (
ph  /\  a  e.  ZZ  /\  b  e.  B
)  ->  ( 0g `  G )  =  ( 0g `  H ) )
15 1zzd 9473 . . . . . . . 8  |-  ( (
ph  /\  a  e.  ZZ  /\  b  e.  B
)  ->  1  e.  ZZ )
16 nnuz 9758 . . . . . . . . 9  |-  NN  =  ( ZZ>= `  1 )
1753ad2ant1 1042 . . . . . . . . . 10  |-  ( (
ph  /\  a  e.  ZZ  /\  b  e.  B
)  ->  B  C_  K
)
18 simp3 1023 . . . . . . . . . 10  |-  ( (
ph  /\  a  e.  ZZ  /\  b  e.  B
)  ->  b  e.  B )
1917, 18sseldd 3225 . . . . . . . . 9  |-  ( (
ph  /\  a  e.  ZZ  /\  b  e.  B
)  ->  b  e.  K )
2016, 19ialgrlemconst 12565 . . . . . . . 8  |-  ( ( ( ph  /\  a  e.  ZZ  /\  b  e.  B )  /\  x  e.  ( ZZ>= `  1 )
)  ->  ( ( NN  X.  { b } ) `  x )  e.  K )
21 mulgpropd.k . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  K  /\  y  e.  K ) )  -> 
( x ( +g  `  G ) y )  e.  K )
22213ad2antl1 1183 . . . . . . . 8  |-  ( ( ( ph  /\  a  e.  ZZ  /\  b  e.  B )  /\  (
x  e.  K  /\  y  e.  K )
)  ->  ( x
( +g  `  G ) y )  e.  K
)
23113ad2antl1 1183 . . . . . . . 8  |-  ( ( ( ph  /\  a  e.  ZZ  /\  b  e.  B )  /\  (
x  e.  K  /\  y  e.  K )
)  ->  ( x
( +g  `  G ) y )  =  ( x ( +g  `  H
) y ) )
2415, 20, 22, 23seqfeq3 10751 . . . . . . 7  |-  ( (
ph  /\  a  e.  ZZ  /\  b  e.  B
)  ->  seq 1
( ( +g  `  G
) ,  ( NN 
X.  { b } ) )  =  seq 1 ( ( +g  `  H ) ,  ( NN  X.  { b } ) ) )
2524fveq1d 5629 . . . . . 6  |-  ( (
ph  /\  a  e.  ZZ  /\  b  e.  B
)  ->  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { b } ) ) `  a )  =  (  seq 1 ( ( +g  `  H ) ,  ( NN  X.  { b } ) ) `  a ) )
261, 2, 3, 4, 12grpinvpropdg 13608 . . . . . . . 8  |-  ( ph  ->  ( invg `  G )  =  ( invg `  H
) )
27263ad2ant1 1042 . . . . . . 7  |-  ( (
ph  /\  a  e.  ZZ  /\  b  e.  B
)  ->  ( invg `  G )  =  ( invg `  H ) )
2824fveq1d 5629 . . . . . . 7  |-  ( (
ph  /\  a  e.  ZZ  /\  b  e.  B
)  ->  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { b } ) ) `  -u a )  =  (  seq 1 ( ( +g  `  H ) ,  ( NN  X.  { b } ) ) `  -u a
) )
2927, 28fveq12d 5634 . . . . . 6  |-  ( (
ph  /\  a  e.  ZZ  /\  b  e.  B
)  ->  ( ( invg `  G ) `
 (  seq 1
( ( +g  `  G
) ,  ( NN 
X.  { b } ) ) `  -u a
) )  =  ( ( invg `  H ) `  (  seq 1 ( ( +g  `  H ) ,  ( NN  X.  { b } ) ) `  -u a ) ) )
3025, 29ifeq12d 3622 . . . . 5  |-  ( (
ph  /\  a  e.  ZZ  /\  b  e.  B
)  ->  if (
0  <  a , 
(  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { b } ) ) `  a ) ,  ( ( invg `  G ) `
 (  seq 1
( ( +g  `  G
) ,  ( NN 
X.  { b } ) ) `  -u a
) ) )  =  if ( 0  < 
a ,  (  seq 1 ( ( +g  `  H ) ,  ( NN  X.  { b } ) ) `  a ) ,  ( ( invg `  H ) `  (  seq 1 ( ( +g  `  H ) ,  ( NN  X.  { b } ) ) `  -u a ) ) ) )
3114, 30ifeq12d 3622 . . . 4  |-  ( (
ph  /\  a  e.  ZZ  /\  b  e.  B
)  ->  if (
a  =  0 ,  ( 0g `  G
) ,  if ( 0  <  a ,  (  seq 1 ( ( +g  `  G
) ,  ( NN 
X.  { b } ) ) `  a
) ,  ( ( invg `  G
) `  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { b } ) ) `  -u a ) ) ) )  =  if ( a  =  0 ,  ( 0g `  H
) ,  if ( 0  <  a ,  (  seq 1 ( ( +g  `  H
) ,  ( NN 
X.  { b } ) ) `  a
) ,  ( ( invg `  H
) `  (  seq 1 ( ( +g  `  H ) ,  ( NN  X.  { b } ) ) `  -u a ) ) ) ) )
3231mpoeq3dva 6068 . . 3  |-  ( ph  ->  ( a  e.  ZZ ,  b  e.  B  |->  if ( a  =  0 ,  ( 0g
`  G ) ,  if ( 0  < 
a ,  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { b } ) ) `  a ) ,  ( ( invg `  G ) `  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { b } ) ) `  -u a ) ) ) ) )  =  ( a  e.  ZZ , 
b  e.  B  |->  if ( a  =  0 ,  ( 0g `  H ) ,  if ( 0  <  a ,  (  seq 1
( ( +g  `  H
) ,  ( NN 
X.  { b } ) ) `  a
) ,  ( ( invg `  H
) `  (  seq 1 ( ( +g  `  H ) ,  ( NN  X.  { b } ) ) `  -u a ) ) ) ) ) )
33 eqidd 2230 . . . 4  |-  ( ph  ->  ZZ  =  ZZ )
34 eqidd 2230 . . . 4  |-  ( ph  ->  if ( a  =  0 ,  ( 0g
`  G ) ,  if ( 0  < 
a ,  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { b } ) ) `  a ) ,  ( ( invg `  G ) `  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { b } ) ) `  -u a ) ) ) )  =  if ( a  =  0 ,  ( 0g `  G
) ,  if ( 0  <  a ,  (  seq 1 ( ( +g  `  G
) ,  ( NN 
X.  { b } ) ) `  a
) ,  ( ( invg `  G
) `  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { b } ) ) `  -u a ) ) ) ) )
3533, 1, 34mpoeq123dv 6066 . . 3  |-  ( ph  ->  ( a  e.  ZZ ,  b  e.  B  |->  if ( a  =  0 ,  ( 0g
`  G ) ,  if ( 0  < 
a ,  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { b } ) ) `  a ) ,  ( ( invg `  G ) `  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { b } ) ) `  -u a ) ) ) ) )  =  ( a  e.  ZZ , 
b  e.  ( Base `  G )  |->  if ( a  =  0 ,  ( 0g `  G
) ,  if ( 0  <  a ,  (  seq 1 ( ( +g  `  G
) ,  ( NN 
X.  { b } ) ) `  a
) ,  ( ( invg `  G
) `  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { b } ) ) `  -u a ) ) ) ) ) )
36 eqidd 2230 . . . 4  |-  ( ph  ->  if ( a  =  0 ,  ( 0g
`  H ) ,  if ( 0  < 
a ,  (  seq 1 ( ( +g  `  H ) ,  ( NN  X.  { b } ) ) `  a ) ,  ( ( invg `  H ) `  (  seq 1 ( ( +g  `  H ) ,  ( NN  X.  { b } ) ) `  -u a ) ) ) )  =  if ( a  =  0 ,  ( 0g `  H
) ,  if ( 0  <  a ,  (  seq 1 ( ( +g  `  H
) ,  ( NN 
X.  { b } ) ) `  a
) ,  ( ( invg `  H
) `  (  seq 1 ( ( +g  `  H ) ,  ( NN  X.  { b } ) ) `  -u a ) ) ) ) )
3733, 2, 36mpoeq123dv 6066 . . 3  |-  ( ph  ->  ( a  e.  ZZ ,  b  e.  B  |->  if ( a  =  0 ,  ( 0g
`  H ) ,  if ( 0  < 
a ,  (  seq 1 ( ( +g  `  H ) ,  ( NN  X.  { b } ) ) `  a ) ,  ( ( invg `  H ) `  (  seq 1 ( ( +g  `  H ) ,  ( NN  X.  { b } ) ) `  -u a ) ) ) ) )  =  ( a  e.  ZZ , 
b  e.  ( Base `  H )  |->  if ( a  =  0 ,  ( 0g `  H
) ,  if ( 0  <  a ,  (  seq 1 ( ( +g  `  H
) ,  ( NN 
X.  { b } ) ) `  a
) ,  ( ( invg `  H
) `  (  seq 1 ( ( +g  `  H ) ,  ( NN  X.  { b } ) ) `  -u a ) ) ) ) ) )
3832, 35, 373eqtr3d 2270 . 2  |-  ( ph  ->  ( a  e.  ZZ ,  b  e.  ( Base `  G )  |->  if ( a  =  0 ,  ( 0g `  G ) ,  if ( 0  <  a ,  (  seq 1
( ( +g  `  G
) ,  ( NN 
X.  { b } ) ) `  a
) ,  ( ( invg `  G
) `  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { b } ) ) `  -u a ) ) ) ) )  =  ( a  e.  ZZ , 
b  e.  ( Base `  H )  |->  if ( a  =  0 ,  ( 0g `  H
) ,  if ( 0  <  a ,  (  seq 1 ( ( +g  `  H
) ,  ( NN 
X.  { b } ) ) `  a
) ,  ( ( invg `  H
) `  (  seq 1 ( ( +g  `  H ) ,  ( NN  X.  { b } ) ) `  -u a ) ) ) ) ) )
39 mulgpropdg.m . . 3  |-  ( ph  ->  .x.  =  (.g `  G
) )
40 eqid 2229 . . . . 5  |-  ( Base `  G )  =  (
Base `  G )
41 eqid 2229 . . . . 5  |-  ( +g  `  G )  =  ( +g  `  G )
42 eqid 2229 . . . . 5  |-  ( 0g
`  G )  =  ( 0g `  G
)
43 eqid 2229 . . . . 5  |-  ( invg `  G )  =  ( invg `  G )
44 eqid 2229 . . . . 5  |-  (.g `  G
)  =  (.g `  G
)
4540, 41, 42, 43, 44mulgfvalg 13658 . . . 4  |-  ( G  e.  V  ->  (.g `  G )  =  ( a  e.  ZZ , 
b  e.  ( Base `  G )  |->  if ( a  =  0 ,  ( 0g `  G
) ,  if ( 0  <  a ,  (  seq 1 ( ( +g  `  G
) ,  ( NN 
X.  { b } ) ) `  a
) ,  ( ( invg `  G
) `  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { b } ) ) `  -u a ) ) ) ) ) )
463, 45syl 14 . . 3  |-  ( ph  ->  (.g `  G )  =  ( a  e.  ZZ ,  b  e.  ( Base `  G )  |->  if ( a  =  0 ,  ( 0g `  G ) ,  if ( 0  <  a ,  (  seq 1
( ( +g  `  G
) ,  ( NN 
X.  { b } ) ) `  a
) ,  ( ( invg `  G
) `  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { b } ) ) `  -u a ) ) ) ) ) )
4739, 46eqtrd 2262 . 2  |-  ( ph  ->  .x.  =  ( a  e.  ZZ ,  b  e.  ( Base `  G
)  |->  if ( a  =  0 ,  ( 0g `  G ) ,  if ( 0  <  a ,  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { b } ) ) `  a ) ,  ( ( invg `  G ) `
 (  seq 1
( ( +g  `  G
) ,  ( NN 
X.  { b } ) ) `  -u a
) ) ) ) ) )
48 mulgpropdg.n . . 3  |-  ( ph  ->  .X.  =  (.g `  H
) )
49 eqid 2229 . . . . 5  |-  ( Base `  H )  =  (
Base `  H )
50 eqid 2229 . . . . 5  |-  ( +g  `  H )  =  ( +g  `  H )
51 eqid 2229 . . . . 5  |-  ( 0g
`  H )  =  ( 0g `  H
)
52 eqid 2229 . . . . 5  |-  ( invg `  H )  =  ( invg `  H )
53 eqid 2229 . . . . 5  |-  (.g `  H
)  =  (.g `  H
)
5449, 50, 51, 52, 53mulgfvalg 13658 . . . 4  |-  ( H  e.  W  ->  (.g `  H )  =  ( a  e.  ZZ , 
b  e.  ( Base `  H )  |->  if ( a  =  0 ,  ( 0g `  H
) ,  if ( 0  <  a ,  (  seq 1 ( ( +g  `  H
) ,  ( NN 
X.  { b } ) ) `  a
) ,  ( ( invg `  H
) `  (  seq 1 ( ( +g  `  H ) ,  ( NN  X.  { b } ) ) `  -u a ) ) ) ) ) )
554, 54syl 14 . . 3  |-  ( ph  ->  (.g `  H )  =  ( a  e.  ZZ ,  b  e.  ( Base `  H )  |->  if ( a  =  0 ,  ( 0g `  H ) ,  if ( 0  <  a ,  (  seq 1
( ( +g  `  H
) ,  ( NN 
X.  { b } ) ) `  a
) ,  ( ( invg `  H
) `  (  seq 1 ( ( +g  `  H ) ,  ( NN  X.  { b } ) ) `  -u a ) ) ) ) ) )
5648, 55eqtrd 2262 . 2  |-  ( ph  ->  .X.  =  ( a  e.  ZZ ,  b  e.  ( Base `  H
)  |->  if ( a  =  0 ,  ( 0g `  H ) ,  if ( 0  <  a ,  (  seq 1 ( ( +g  `  H ) ,  ( NN  X.  { b } ) ) `  a ) ,  ( ( invg `  H ) `
 (  seq 1
( ( +g  `  H
) ,  ( NN 
X.  { b } ) ) `  -u a
) ) ) ) ) )
5738, 47, 563eqtr4d 2272 1  |-  ( ph  ->  .x.  =  .X.  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 1002    = wceq 1395    e. wcel 2200    C_ wss 3197   ifcif 3602   {csn 3666   class class class wbr 4083    X. cxp 4717   ` cfv 5318  (class class class)co 6001    e. cmpo 6003   0cc0 7999   1c1 8000    < clt 8181   -ucneg 8318   NNcn 9110   ZZcz 9446    seqcseq 10669   Basecbs 13032   +g cplusg 13110   0gc0g 13289   invgcminusg 13534  .gcmg 13656
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-addass 8101  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-0id 8107  ax-rnegex 8108  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-ltadd 8115
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-recs 6451  df-frec 6537  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-inn 9111  df-n0 9370  df-z 9447  df-uz 9723  df-seqfrec 10670  df-ndx 13035  df-slot 13036  df-base 13038  df-0g 13291  df-minusg 13537  df-mulg 13657
This theorem is referenced by:  mulgass3  14048
  Copyright terms: Public domain W3C validator