ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulgpropdg Unicode version

Theorem mulgpropdg 13294
Description: Two structures with the same group-nature have the same group multiple function.  K is expected to either be  _V (when strong equality is available) or  B (when closure is available). (Contributed by Stefan O'Rear, 21-Mar-2015.) (Revised by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
mulgpropdg.m  |-  ( ph  ->  .x.  =  (.g `  G
) )
mulgpropdg.n  |-  ( ph  ->  .X.  =  (.g `  H
) )
mulgpropdg.g  |-  ( ph  ->  G  e.  V )
mulgpropdg.h  |-  ( ph  ->  H  e.  W )
mulgpropd.b1  |-  ( ph  ->  B  =  ( Base `  G ) )
mulgpropd.b2  |-  ( ph  ->  B  =  ( Base `  H ) )
mulgpropd.i  |-  ( ph  ->  B  C_  K )
mulgpropd.k  |-  ( (
ph  /\  ( x  e.  K  /\  y  e.  K ) )  -> 
( x ( +g  `  G ) y )  e.  K )
mulgpropd.e  |-  ( (
ph  /\  ( x  e.  K  /\  y  e.  K ) )  -> 
( x ( +g  `  G ) y )  =  ( x ( +g  `  H ) y ) )
Assertion
Ref Expression
mulgpropdg  |-  ( ph  ->  .x.  =  .X.  )
Distinct variable groups:    ph, x, y   
x, B, y    x, G, y    x, H, y   
x, K, y
Allowed substitution hints:    .x. ( x, y)    .X. (
x, y)    V( x, y)    W( x, y)

Proof of Theorem mulgpropdg
Dummy variables  a  b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mulgpropd.b1 . . . . . . 7  |-  ( ph  ->  B  =  ( Base `  G ) )
2 mulgpropd.b2 . . . . . . 7  |-  ( ph  ->  B  =  ( Base `  H ) )
3 mulgpropdg.g . . . . . . 7  |-  ( ph  ->  G  e.  V )
4 mulgpropdg.h . . . . . . 7  |-  ( ph  ->  H  e.  W )
5 mulgpropd.i . . . . . . . . . 10  |-  ( ph  ->  B  C_  K )
6 ssel 3177 . . . . . . . . . . 11  |-  ( B 
C_  K  ->  (
x  e.  B  ->  x  e.  K )
)
7 ssel 3177 . . . . . . . . . . 11  |-  ( B 
C_  K  ->  (
y  e.  B  -> 
y  e.  K ) )
86, 7anim12d 335 . . . . . . . . . 10  |-  ( B 
C_  K  ->  (
( x  e.  B  /\  y  e.  B
)  ->  ( x  e.  K  /\  y  e.  K ) ) )
95, 8syl 14 . . . . . . . . 9  |-  ( ph  ->  ( ( x  e.  B  /\  y  e.  B )  ->  (
x  e.  K  /\  y  e.  K )
) )
109imp 124 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x  e.  K  /\  y  e.  K
) )
11 mulgpropd.e . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  K  /\  y  e.  K ) )  -> 
( x ( +g  `  G ) y )  =  ( x ( +g  `  H ) y ) )
1210, 11syldan 282 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( +g  `  G ) y )  =  ( x ( +g  `  H ) y ) )
131, 2, 3, 4, 12grpidpropdg 13017 . . . . . 6  |-  ( ph  ->  ( 0g `  G
)  =  ( 0g
`  H ) )
14133ad2ant1 1020 . . . . 5  |-  ( (
ph  /\  a  e.  ZZ  /\  b  e.  B
)  ->  ( 0g `  G )  =  ( 0g `  H ) )
15 1zzd 9353 . . . . . . . 8  |-  ( (
ph  /\  a  e.  ZZ  /\  b  e.  B
)  ->  1  e.  ZZ )
16 nnuz 9637 . . . . . . . . 9  |-  NN  =  ( ZZ>= `  1 )
1753ad2ant1 1020 . . . . . . . . . 10  |-  ( (
ph  /\  a  e.  ZZ  /\  b  e.  B
)  ->  B  C_  K
)
18 simp3 1001 . . . . . . . . . 10  |-  ( (
ph  /\  a  e.  ZZ  /\  b  e.  B
)  ->  b  e.  B )
1917, 18sseldd 3184 . . . . . . . . 9  |-  ( (
ph  /\  a  e.  ZZ  /\  b  e.  B
)  ->  b  e.  K )
2016, 19ialgrlemconst 12211 . . . . . . . 8  |-  ( ( ( ph  /\  a  e.  ZZ  /\  b  e.  B )  /\  x  e.  ( ZZ>= `  1 )
)  ->  ( ( NN  X.  { b } ) `  x )  e.  K )
21 mulgpropd.k . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  K  /\  y  e.  K ) )  -> 
( x ( +g  `  G ) y )  e.  K )
22213ad2antl1 1161 . . . . . . . 8  |-  ( ( ( ph  /\  a  e.  ZZ  /\  b  e.  B )  /\  (
x  e.  K  /\  y  e.  K )
)  ->  ( x
( +g  `  G ) y )  e.  K
)
23113ad2antl1 1161 . . . . . . . 8  |-  ( ( ( ph  /\  a  e.  ZZ  /\  b  e.  B )  /\  (
x  e.  K  /\  y  e.  K )
)  ->  ( x
( +g  `  G ) y )  =  ( x ( +g  `  H
) y ) )
2415, 20, 22, 23seqfeq3 10621 . . . . . . 7  |-  ( (
ph  /\  a  e.  ZZ  /\  b  e.  B
)  ->  seq 1
( ( +g  `  G
) ,  ( NN 
X.  { b } ) )  =  seq 1 ( ( +g  `  H ) ,  ( NN  X.  { b } ) ) )
2524fveq1d 5560 . . . . . 6  |-  ( (
ph  /\  a  e.  ZZ  /\  b  e.  B
)  ->  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { b } ) ) `  a )  =  (  seq 1 ( ( +g  `  H ) ,  ( NN  X.  { b } ) ) `  a ) )
261, 2, 3, 4, 12grpinvpropdg 13207 . . . . . . . 8  |-  ( ph  ->  ( invg `  G )  =  ( invg `  H
) )
27263ad2ant1 1020 . . . . . . 7  |-  ( (
ph  /\  a  e.  ZZ  /\  b  e.  B
)  ->  ( invg `  G )  =  ( invg `  H ) )
2824fveq1d 5560 . . . . . . 7  |-  ( (
ph  /\  a  e.  ZZ  /\  b  e.  B
)  ->  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { b } ) ) `  -u a )  =  (  seq 1 ( ( +g  `  H ) ,  ( NN  X.  { b } ) ) `  -u a
) )
2927, 28fveq12d 5565 . . . . . 6  |-  ( (
ph  /\  a  e.  ZZ  /\  b  e.  B
)  ->  ( ( invg `  G ) `
 (  seq 1
( ( +g  `  G
) ,  ( NN 
X.  { b } ) ) `  -u a
) )  =  ( ( invg `  H ) `  (  seq 1 ( ( +g  `  H ) ,  ( NN  X.  { b } ) ) `  -u a ) ) )
3025, 29ifeq12d 3580 . . . . 5  |-  ( (
ph  /\  a  e.  ZZ  /\  b  e.  B
)  ->  if (
0  <  a , 
(  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { b } ) ) `  a ) ,  ( ( invg `  G ) `
 (  seq 1
( ( +g  `  G
) ,  ( NN 
X.  { b } ) ) `  -u a
) ) )  =  if ( 0  < 
a ,  (  seq 1 ( ( +g  `  H ) ,  ( NN  X.  { b } ) ) `  a ) ,  ( ( invg `  H ) `  (  seq 1 ( ( +g  `  H ) ,  ( NN  X.  { b } ) ) `  -u a ) ) ) )
3114, 30ifeq12d 3580 . . . 4  |-  ( (
ph  /\  a  e.  ZZ  /\  b  e.  B
)  ->  if (
a  =  0 ,  ( 0g `  G
) ,  if ( 0  <  a ,  (  seq 1 ( ( +g  `  G
) ,  ( NN 
X.  { b } ) ) `  a
) ,  ( ( invg `  G
) `  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { b } ) ) `  -u a ) ) ) )  =  if ( a  =  0 ,  ( 0g `  H
) ,  if ( 0  <  a ,  (  seq 1 ( ( +g  `  H
) ,  ( NN 
X.  { b } ) ) `  a
) ,  ( ( invg `  H
) `  (  seq 1 ( ( +g  `  H ) ,  ( NN  X.  { b } ) ) `  -u a ) ) ) ) )
3231mpoeq3dva 5986 . . 3  |-  ( ph  ->  ( a  e.  ZZ ,  b  e.  B  |->  if ( a  =  0 ,  ( 0g
`  G ) ,  if ( 0  < 
a ,  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { b } ) ) `  a ) ,  ( ( invg `  G ) `  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { b } ) ) `  -u a ) ) ) ) )  =  ( a  e.  ZZ , 
b  e.  B  |->  if ( a  =  0 ,  ( 0g `  H ) ,  if ( 0  <  a ,  (  seq 1
( ( +g  `  H
) ,  ( NN 
X.  { b } ) ) `  a
) ,  ( ( invg `  H
) `  (  seq 1 ( ( +g  `  H ) ,  ( NN  X.  { b } ) ) `  -u a ) ) ) ) ) )
33 eqidd 2197 . . . 4  |-  ( ph  ->  ZZ  =  ZZ )
34 eqidd 2197 . . . 4  |-  ( ph  ->  if ( a  =  0 ,  ( 0g
`  G ) ,  if ( 0  < 
a ,  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { b } ) ) `  a ) ,  ( ( invg `  G ) `  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { b } ) ) `  -u a ) ) ) )  =  if ( a  =  0 ,  ( 0g `  G
) ,  if ( 0  <  a ,  (  seq 1 ( ( +g  `  G
) ,  ( NN 
X.  { b } ) ) `  a
) ,  ( ( invg `  G
) `  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { b } ) ) `  -u a ) ) ) ) )
3533, 1, 34mpoeq123dv 5984 . . 3  |-  ( ph  ->  ( a  e.  ZZ ,  b  e.  B  |->  if ( a  =  0 ,  ( 0g
`  G ) ,  if ( 0  < 
a ,  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { b } ) ) `  a ) ,  ( ( invg `  G ) `  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { b } ) ) `  -u a ) ) ) ) )  =  ( a  e.  ZZ , 
b  e.  ( Base `  G )  |->  if ( a  =  0 ,  ( 0g `  G
) ,  if ( 0  <  a ,  (  seq 1 ( ( +g  `  G
) ,  ( NN 
X.  { b } ) ) `  a
) ,  ( ( invg `  G
) `  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { b } ) ) `  -u a ) ) ) ) ) )
36 eqidd 2197 . . . 4  |-  ( ph  ->  if ( a  =  0 ,  ( 0g
`  H ) ,  if ( 0  < 
a ,  (  seq 1 ( ( +g  `  H ) ,  ( NN  X.  { b } ) ) `  a ) ,  ( ( invg `  H ) `  (  seq 1 ( ( +g  `  H ) ,  ( NN  X.  { b } ) ) `  -u a ) ) ) )  =  if ( a  =  0 ,  ( 0g `  H
) ,  if ( 0  <  a ,  (  seq 1 ( ( +g  `  H
) ,  ( NN 
X.  { b } ) ) `  a
) ,  ( ( invg `  H
) `  (  seq 1 ( ( +g  `  H ) ,  ( NN  X.  { b } ) ) `  -u a ) ) ) ) )
3733, 2, 36mpoeq123dv 5984 . . 3  |-  ( ph  ->  ( a  e.  ZZ ,  b  e.  B  |->  if ( a  =  0 ,  ( 0g
`  H ) ,  if ( 0  < 
a ,  (  seq 1 ( ( +g  `  H ) ,  ( NN  X.  { b } ) ) `  a ) ,  ( ( invg `  H ) `  (  seq 1 ( ( +g  `  H ) ,  ( NN  X.  { b } ) ) `  -u a ) ) ) ) )  =  ( a  e.  ZZ , 
b  e.  ( Base `  H )  |->  if ( a  =  0 ,  ( 0g `  H
) ,  if ( 0  <  a ,  (  seq 1 ( ( +g  `  H
) ,  ( NN 
X.  { b } ) ) `  a
) ,  ( ( invg `  H
) `  (  seq 1 ( ( +g  `  H ) ,  ( NN  X.  { b } ) ) `  -u a ) ) ) ) ) )
3832, 35, 373eqtr3d 2237 . 2  |-  ( ph  ->  ( a  e.  ZZ ,  b  e.  ( Base `  G )  |->  if ( a  =  0 ,  ( 0g `  G ) ,  if ( 0  <  a ,  (  seq 1
( ( +g  `  G
) ,  ( NN 
X.  { b } ) ) `  a
) ,  ( ( invg `  G
) `  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { b } ) ) `  -u a ) ) ) ) )  =  ( a  e.  ZZ , 
b  e.  ( Base `  H )  |->  if ( a  =  0 ,  ( 0g `  H
) ,  if ( 0  <  a ,  (  seq 1 ( ( +g  `  H
) ,  ( NN 
X.  { b } ) ) `  a
) ,  ( ( invg `  H
) `  (  seq 1 ( ( +g  `  H ) ,  ( NN  X.  { b } ) ) `  -u a ) ) ) ) ) )
39 mulgpropdg.m . . 3  |-  ( ph  ->  .x.  =  (.g `  G
) )
40 eqid 2196 . . . . 5  |-  ( Base `  G )  =  (
Base `  G )
41 eqid 2196 . . . . 5  |-  ( +g  `  G )  =  ( +g  `  G )
42 eqid 2196 . . . . 5  |-  ( 0g
`  G )  =  ( 0g `  G
)
43 eqid 2196 . . . . 5  |-  ( invg `  G )  =  ( invg `  G )
44 eqid 2196 . . . . 5  |-  (.g `  G
)  =  (.g `  G
)
4540, 41, 42, 43, 44mulgfvalg 13251 . . . 4  |-  ( G  e.  V  ->  (.g `  G )  =  ( a  e.  ZZ , 
b  e.  ( Base `  G )  |->  if ( a  =  0 ,  ( 0g `  G
) ,  if ( 0  <  a ,  (  seq 1 ( ( +g  `  G
) ,  ( NN 
X.  { b } ) ) `  a
) ,  ( ( invg `  G
) `  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { b } ) ) `  -u a ) ) ) ) ) )
463, 45syl 14 . . 3  |-  ( ph  ->  (.g `  G )  =  ( a  e.  ZZ ,  b  e.  ( Base `  G )  |->  if ( a  =  0 ,  ( 0g `  G ) ,  if ( 0  <  a ,  (  seq 1
( ( +g  `  G
) ,  ( NN 
X.  { b } ) ) `  a
) ,  ( ( invg `  G
) `  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { b } ) ) `  -u a ) ) ) ) ) )
4739, 46eqtrd 2229 . 2  |-  ( ph  ->  .x.  =  ( a  e.  ZZ ,  b  e.  ( Base `  G
)  |->  if ( a  =  0 ,  ( 0g `  G ) ,  if ( 0  <  a ,  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { b } ) ) `  a ) ,  ( ( invg `  G ) `
 (  seq 1
( ( +g  `  G
) ,  ( NN 
X.  { b } ) ) `  -u a
) ) ) ) ) )
48 mulgpropdg.n . . 3  |-  ( ph  ->  .X.  =  (.g `  H
) )
49 eqid 2196 . . . . 5  |-  ( Base `  H )  =  (
Base `  H )
50 eqid 2196 . . . . 5  |-  ( +g  `  H )  =  ( +g  `  H )
51 eqid 2196 . . . . 5  |-  ( 0g
`  H )  =  ( 0g `  H
)
52 eqid 2196 . . . . 5  |-  ( invg `  H )  =  ( invg `  H )
53 eqid 2196 . . . . 5  |-  (.g `  H
)  =  (.g `  H
)
5449, 50, 51, 52, 53mulgfvalg 13251 . . . 4  |-  ( H  e.  W  ->  (.g `  H )  =  ( a  e.  ZZ , 
b  e.  ( Base `  H )  |->  if ( a  =  0 ,  ( 0g `  H
) ,  if ( 0  <  a ,  (  seq 1 ( ( +g  `  H
) ,  ( NN 
X.  { b } ) ) `  a
) ,  ( ( invg `  H
) `  (  seq 1 ( ( +g  `  H ) ,  ( NN  X.  { b } ) ) `  -u a ) ) ) ) ) )
554, 54syl 14 . . 3  |-  ( ph  ->  (.g `  H )  =  ( a  e.  ZZ ,  b  e.  ( Base `  H )  |->  if ( a  =  0 ,  ( 0g `  H ) ,  if ( 0  <  a ,  (  seq 1
( ( +g  `  H
) ,  ( NN 
X.  { b } ) ) `  a
) ,  ( ( invg `  H
) `  (  seq 1 ( ( +g  `  H ) ,  ( NN  X.  { b } ) ) `  -u a ) ) ) ) ) )
5648, 55eqtrd 2229 . 2  |-  ( ph  ->  .X.  =  ( a  e.  ZZ ,  b  e.  ( Base `  H
)  |->  if ( a  =  0 ,  ( 0g `  H ) ,  if ( 0  <  a ,  (  seq 1 ( ( +g  `  H ) ,  ( NN  X.  { b } ) ) `  a ) ,  ( ( invg `  H ) `
 (  seq 1
( ( +g  `  H
) ,  ( NN 
X.  { b } ) ) `  -u a
) ) ) ) ) )
5738, 47, 563eqtr4d 2239 1  |-  ( ph  ->  .x.  =  .X.  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364    e. wcel 2167    C_ wss 3157   ifcif 3561   {csn 3622   class class class wbr 4033    X. cxp 4661   ` cfv 5258  (class class class)co 5922    e. cmpo 5924   0cc0 7879   1c1 7880    < clt 8061   -ucneg 8198   NNcn 8990   ZZcz 9326    seqcseq 10539   Basecbs 12678   +g cplusg 12755   0gc0g 12927   invgcminusg 13133  .gcmg 13249
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-inn 8991  df-n0 9250  df-z 9327  df-uz 9602  df-seqfrec 10540  df-ndx 12681  df-slot 12682  df-base 12684  df-0g 12929  df-minusg 13136  df-mulg 13250
This theorem is referenced by:  mulgass3  13641
  Copyright terms: Public domain W3C validator