| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ifcldadc | Unicode version | ||
| Description: Conditional closure. (Contributed by Jim Kingdon, 11-Jan-2022.) |
| Ref | Expression |
|---|---|
| ifcldadc.1 |
|
| ifcldadc.2 |
|
| ifcldadc.dc |
|
| Ref | Expression |
|---|---|
| ifcldadc |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iftrue 3607 |
. . . 4
| |
| 2 | 1 | adantl 277 |
. . 3
|
| 3 | ifcldadc.1 |
. . 3
| |
| 4 | 2, 3 | eqeltrd 2306 |
. 2
|
| 5 | iffalse 3610 |
. . . 4
| |
| 6 | 5 | adantl 277 |
. . 3
|
| 7 | ifcldadc.2 |
. . 3
| |
| 8 | 6, 7 | eqeltrd 2306 |
. 2
|
| 9 | ifcldadc.dc |
. . 3
| |
| 10 | exmiddc 841 |
. . 3
| |
| 11 | 9, 10 | syl 14 |
. 2
|
| 12 | 4, 8, 11 | mpjaodan 803 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-if 3603 |
| This theorem is referenced by: updjudhf 7246 omp1eomlem 7261 difinfsnlem 7266 ctmlemr 7275 ctssdclemn0 7277 ctssdc 7280 enumctlemm 7281 xaddf 10040 xaddval 10041 iseqf1olemqcl 10721 iseqf1olemnab 10723 iseqf1olemjpcl 10730 iseqf1olemqpcl 10731 seq3f1oleml 10738 seq3f1o 10739 exp3val 10763 ccatcl 11128 swrdclg 11182 xrmaxiflemcl 11756 summodclem2a 11892 zsumdc 11895 fsum3 11898 isumss 11902 fsum3cvg2 11905 fsum3ser 11908 fsumcl2lem 11909 fsumadd 11917 sumsnf 11920 sumsplitdc 11943 fsummulc2 11959 isumlessdc 12007 cvgratz 12043 prodmodclem3 12086 prodmodclem2a 12087 zproddc 12090 fprodseq 12094 fprodmul 12102 prodsnf 12103 eucalgval2 12575 lcmval 12585 pcmpt 12866 ennnfonelemg 12974 mulgval 13659 mulgfng 13661 elplyd 15415 dvply1 15439 lgsval 15683 lgsfvalg 15684 lgsfcl2 15685 lgscllem 15686 lgsval2lem 15689 lgsdir 15714 lgsdilem2 15715 lgsdi 15716 lgsne0 15717 subctctexmid 16366 |
| Copyright terms: Public domain | W3C validator |