| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ifcldadc | Unicode version | ||
| Description: Conditional closure. (Contributed by Jim Kingdon, 11-Jan-2022.) |
| Ref | Expression |
|---|---|
| ifcldadc.1 |
|
| ifcldadc.2 |
|
| ifcldadc.dc |
|
| Ref | Expression |
|---|---|
| ifcldadc |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iftrue 3576 |
. . . 4
| |
| 2 | 1 | adantl 277 |
. . 3
|
| 3 | ifcldadc.1 |
. . 3
| |
| 4 | 2, 3 | eqeltrd 2282 |
. 2
|
| 5 | iffalse 3579 |
. . . 4
| |
| 6 | 5 | adantl 277 |
. . 3
|
| 7 | ifcldadc.2 |
. . 3
| |
| 8 | 6, 7 | eqeltrd 2282 |
. 2
|
| 9 | ifcldadc.dc |
. . 3
| |
| 10 | exmiddc 838 |
. . 3
| |
| 11 | 9, 10 | syl 14 |
. 2
|
| 12 | 4, 8, 11 | mpjaodan 800 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-11 1529 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-if 3572 |
| This theorem is referenced by: updjudhf 7181 omp1eomlem 7196 difinfsnlem 7201 ctmlemr 7210 ctssdclemn0 7212 ctssdc 7215 enumctlemm 7216 xaddf 9966 xaddval 9967 iseqf1olemqcl 10644 iseqf1olemnab 10646 iseqf1olemjpcl 10653 iseqf1olemqpcl 10654 seq3f1oleml 10661 seq3f1o 10662 exp3val 10686 ccatcl 11049 swrdclg 11103 xrmaxiflemcl 11556 summodclem2a 11692 zsumdc 11695 fsum3 11698 isumss 11702 fsum3cvg2 11705 fsum3ser 11708 fsumcl2lem 11709 fsumadd 11717 sumsnf 11720 sumsplitdc 11743 fsummulc2 11759 isumlessdc 11807 cvgratz 11843 prodmodclem3 11886 prodmodclem2a 11887 zproddc 11890 fprodseq 11894 fprodmul 11902 prodsnf 11903 eucalgval2 12375 lcmval 12385 pcmpt 12666 ennnfonelemg 12774 mulgval 13458 mulgfng 13460 elplyd 15213 dvply1 15237 lgsval 15481 lgsfvalg 15482 lgsfcl2 15483 lgscllem 15484 lgsval2lem 15487 lgsdir 15512 lgsdilem2 15513 lgsdi 15514 lgsne0 15515 subctctexmid 15937 |
| Copyright terms: Public domain | W3C validator |