![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ifcldadc | Unicode version |
Description: Conditional closure. (Contributed by Jim Kingdon, 11-Jan-2022.) |
Ref | Expression |
---|---|
ifcldadc.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
ifcldadc.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
ifcldadc.dc |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
ifcldadc |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iftrue 3563 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | adantl 277 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | ifcldadc.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 2, 3 | eqeltrd 2270 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | iffalse 3566 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
6 | 5 | adantl 277 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
7 | ifcldadc.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
8 | 6, 7 | eqeltrd 2270 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
9 | ifcldadc.dc |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
10 | exmiddc 837 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
11 | 9, 10 | syl 14 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
12 | 4, 8, 11 | mpjaodan 799 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-11 1517 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-if 3559 |
This theorem is referenced by: updjudhf 7140 omp1eomlem 7155 difinfsnlem 7160 ctmlemr 7169 ctssdclemn0 7171 ctssdc 7174 enumctlemm 7175 xaddf 9913 xaddval 9914 iseqf1olemqcl 10573 iseqf1olemnab 10575 iseqf1olemjpcl 10582 iseqf1olemqpcl 10583 seq3f1oleml 10590 seq3f1o 10591 exp3val 10615 xrmaxiflemcl 11391 summodclem2a 11527 zsumdc 11530 fsum3 11533 isumss 11537 fsum3cvg2 11540 fsum3ser 11543 fsumcl2lem 11544 fsumadd 11552 sumsnf 11555 sumsplitdc 11578 fsummulc2 11594 isumlessdc 11642 cvgratz 11678 prodmodclem3 11721 prodmodclem2a 11722 zproddc 11725 fprodseq 11729 fprodmul 11737 prodsnf 11738 eucalgval2 12194 lcmval 12204 pcmpt 12484 ennnfonelemg 12563 mulgval 13195 mulgfng 13197 elplyd 14920 dvply1 14943 lgsval 15161 lgsfvalg 15162 lgsfcl2 15163 lgscllem 15164 lgsval2lem 15167 lgsdir 15192 lgsdilem2 15193 lgsdi 15194 lgsne0 15195 subctctexmid 15561 |
Copyright terms: Public domain | W3C validator |