![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ifcldadc | Unicode version |
Description: Conditional closure. (Contributed by Jim Kingdon, 11-Jan-2022.) |
Ref | Expression |
---|---|
ifcldadc.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
ifcldadc.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
ifcldadc.dc |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
ifcldadc |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iftrue 3562 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | adantl 277 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | ifcldadc.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 2, 3 | eqeltrd 2270 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | iffalse 3565 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
6 | 5 | adantl 277 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
7 | ifcldadc.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
8 | 6, 7 | eqeltrd 2270 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
9 | ifcldadc.dc |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
10 | exmiddc 837 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
11 | 9, 10 | syl 14 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
12 | 4, 8, 11 | mpjaodan 799 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-11 1517 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-if 3558 |
This theorem is referenced by: updjudhf 7138 omp1eomlem 7153 difinfsnlem 7158 ctmlemr 7167 ctssdclemn0 7169 ctssdc 7172 enumctlemm 7173 xaddf 9910 xaddval 9911 iseqf1olemqcl 10570 iseqf1olemnab 10572 iseqf1olemjpcl 10579 iseqf1olemqpcl 10580 seq3f1oleml 10587 seq3f1o 10588 exp3val 10612 xrmaxiflemcl 11388 summodclem2a 11524 zsumdc 11527 fsum3 11530 isumss 11534 fsum3cvg2 11537 fsum3ser 11540 fsumcl2lem 11541 fsumadd 11549 sumsnf 11552 sumsplitdc 11575 fsummulc2 11591 isumlessdc 11639 cvgratz 11675 prodmodclem3 11718 prodmodclem2a 11719 zproddc 11722 fprodseq 11726 fprodmul 11734 prodsnf 11735 eucalgval2 12191 lcmval 12201 pcmpt 12481 ennnfonelemg 12560 mulgval 13192 mulgfng 13194 elplyd 14887 lgsval 15120 lgsfvalg 15121 lgsfcl2 15122 lgscllem 15123 lgsval2lem 15126 lgsdir 15151 lgsdilem2 15152 lgsdi 15153 lgsne0 15154 subctctexmid 15491 |
Copyright terms: Public domain | W3C validator |