Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ifcldadc | Unicode version |
Description: Conditional closure. (Contributed by Jim Kingdon, 11-Jan-2022.) |
Ref | Expression |
---|---|
ifcldadc.1 | |
ifcldadc.2 | |
ifcldadc.dc | DECID |
Ref | Expression |
---|---|
ifcldadc |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iftrue 3531 | . . . 4 | |
2 | 1 | adantl 275 | . . 3 |
3 | ifcldadc.1 | . . 3 | |
4 | 2, 3 | eqeltrd 2247 | . 2 |
5 | iffalse 3534 | . . . 4 | |
6 | 5 | adantl 275 | . . 3 |
7 | ifcldadc.2 | . . 3 | |
8 | 6, 7 | eqeltrd 2247 | . 2 |
9 | ifcldadc.dc | . . 3 DECID | |
10 | exmiddc 831 | . . 3 DECID | |
11 | 9, 10 | syl 14 | . 2 |
12 | 4, 8, 11 | mpjaodan 793 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wo 703 DECID wdc 829 wceq 1348 wcel 2141 cif 3526 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-11 1499 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-if 3527 |
This theorem is referenced by: updjudhf 7056 omp1eomlem 7071 difinfsnlem 7076 ctmlemr 7085 ctssdclemn0 7087 ctssdc 7090 enumctlemm 7091 xaddf 9801 xaddval 9802 iseqf1olemqcl 10442 iseqf1olemnab 10444 iseqf1olemjpcl 10451 iseqf1olemqpcl 10452 seq3f1oleml 10459 seq3f1o 10460 exp3val 10478 xrmaxiflemcl 11208 summodclem2a 11344 zsumdc 11347 fsum3 11350 isumss 11354 fsum3cvg2 11357 fsum3ser 11360 fsumcl2lem 11361 fsumadd 11369 sumsnf 11372 sumsplitdc 11395 fsummulc2 11411 isumlessdc 11459 cvgratz 11495 prodmodclem3 11538 prodmodclem2a 11539 zproddc 11542 fprodseq 11546 fprodmul 11554 prodsnf 11555 eucalgval2 12007 lcmval 12017 pcmpt 12295 ennnfonelemg 12358 lgsval 13699 lgsfvalg 13700 lgsfcl2 13701 lgscllem 13702 lgsval2lem 13705 lgsdir 13730 lgsdilem2 13731 lgsdi 13732 lgsne0 13733 subctctexmid 14034 |
Copyright terms: Public domain | W3C validator |