| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ifcldadc | Unicode version | ||
| Description: Conditional closure. (Contributed by Jim Kingdon, 11-Jan-2022.) |
| Ref | Expression |
|---|---|
| ifcldadc.1 |
|
| ifcldadc.2 |
|
| ifcldadc.dc |
|
| Ref | Expression |
|---|---|
| ifcldadc |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iftrue 3584 |
. . . 4
| |
| 2 | 1 | adantl 277 |
. . 3
|
| 3 | ifcldadc.1 |
. . 3
| |
| 4 | 2, 3 | eqeltrd 2284 |
. 2
|
| 5 | iffalse 3587 |
. . . 4
| |
| 6 | 5 | adantl 277 |
. . 3
|
| 7 | ifcldadc.2 |
. . 3
| |
| 8 | 6, 7 | eqeltrd 2284 |
. 2
|
| 9 | ifcldadc.dc |
. . 3
| |
| 10 | exmiddc 838 |
. . 3
| |
| 11 | 9, 10 | syl 14 |
. 2
|
| 12 | 4, 8, 11 | mpjaodan 800 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-if 3580 |
| This theorem is referenced by: updjudhf 7207 omp1eomlem 7222 difinfsnlem 7227 ctmlemr 7236 ctssdclemn0 7238 ctssdc 7241 enumctlemm 7242 xaddf 10001 xaddval 10002 iseqf1olemqcl 10681 iseqf1olemnab 10683 iseqf1olemjpcl 10690 iseqf1olemqpcl 10691 seq3f1oleml 10698 seq3f1o 10699 exp3val 10723 ccatcl 11087 swrdclg 11141 xrmaxiflemcl 11671 summodclem2a 11807 zsumdc 11810 fsum3 11813 isumss 11817 fsum3cvg2 11820 fsum3ser 11823 fsumcl2lem 11824 fsumadd 11832 sumsnf 11835 sumsplitdc 11858 fsummulc2 11874 isumlessdc 11922 cvgratz 11958 prodmodclem3 12001 prodmodclem2a 12002 zproddc 12005 fprodseq 12009 fprodmul 12017 prodsnf 12018 eucalgval2 12490 lcmval 12500 pcmpt 12781 ennnfonelemg 12889 mulgval 13573 mulgfng 13575 elplyd 15328 dvply1 15352 lgsval 15596 lgsfvalg 15597 lgsfcl2 15598 lgscllem 15599 lgsval2lem 15602 lgsdir 15627 lgsdilem2 15628 lgsdi 15629 lgsne0 15630 subctctexmid 16139 |
| Copyright terms: Public domain | W3C validator |