![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ifcldadc | Unicode version |
Description: Conditional closure. (Contributed by Jim Kingdon, 11-Jan-2022.) |
Ref | Expression |
---|---|
ifcldadc.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
ifcldadc.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
ifcldadc.dc |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
ifcldadc |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iftrue 3445 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | adantl 273 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | ifcldadc.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 2, 3 | eqeltrd 2191 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | iffalse 3448 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
6 | 5 | adantl 273 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
7 | ifcldadc.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
8 | 6, 7 | eqeltrd 2191 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
9 | ifcldadc.dc |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
10 | exmiddc 804 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
11 | 9, 10 | syl 14 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
12 | 4, 8, 11 | mpjaodan 770 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in2 587 ax-io 681 ax-5 1406 ax-7 1407 ax-gen 1408 ax-ie1 1452 ax-ie2 1453 ax-8 1465 ax-11 1467 ax-4 1470 ax-17 1489 ax-i9 1493 ax-ial 1497 ax-i5r 1498 ax-ext 2097 |
This theorem depends on definitions: df-bi 116 df-dc 803 df-nf 1420 df-sb 1719 df-clab 2102 df-cleq 2108 df-clel 2111 df-if 3441 |
This theorem is referenced by: updjudhf 6916 omp1eomlem 6931 difinfsnlem 6936 ctmlemr 6945 ctssdclemn0 6947 ctssdc 6950 enumctlemm 6951 xaddf 9520 xaddval 9521 iseqf1olemqcl 10152 iseqf1olemnab 10154 iseqf1olemjpcl 10161 iseqf1olemqpcl 10162 seq3f1oleml 10169 seq3f1o 10170 exp3val 10188 xrmaxiflemcl 10906 summodclem2a 11042 zsumdc 11045 fsum3 11048 isumss 11052 fsum3cvg2 11055 fsum3ser 11058 fsumcl2lem 11059 fsumadd 11067 sumsnf 11070 sumsplitdc 11093 fsummulc2 11109 isumlessdc 11157 cvgratz 11193 eucalgval2 11580 lcmval 11590 ennnfonelemg 11761 subctctexmid 12888 |
Copyright terms: Public domain | W3C validator |