| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > ifcldadc | Unicode version | ||
| Description: Conditional closure. (Contributed by Jim Kingdon, 11-Jan-2022.) | 
| Ref | Expression | 
|---|---|
| ifcldadc.1 | 
 | 
| ifcldadc.2 | 
 | 
| ifcldadc.dc | 
 | 
| Ref | Expression | 
|---|---|
| ifcldadc | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | iftrue 3566 | 
. . . 4
 | |
| 2 | 1 | adantl 277 | 
. . 3
 | 
| 3 | ifcldadc.1 | 
. . 3
 | |
| 4 | 2, 3 | eqeltrd 2273 | 
. 2
 | 
| 5 | iffalse 3569 | 
. . . 4
 | |
| 6 | 5 | adantl 277 | 
. . 3
 | 
| 7 | ifcldadc.2 | 
. . 3
 | |
| 8 | 6, 7 | eqeltrd 2273 | 
. 2
 | 
| 9 | ifcldadc.dc | 
. . 3
 | |
| 10 | exmiddc 837 | 
. . 3
 | |
| 11 | 9, 10 | syl 14 | 
. 2
 | 
| 12 | 4, 8, 11 | mpjaodan 799 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:    | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-dc 836 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-if 3562 | 
| This theorem is referenced by: updjudhf 7145 omp1eomlem 7160 difinfsnlem 7165 ctmlemr 7174 ctssdclemn0 7176 ctssdc 7179 enumctlemm 7180 xaddf 9919 xaddval 9920 iseqf1olemqcl 10591 iseqf1olemnab 10593 iseqf1olemjpcl 10600 iseqf1olemqpcl 10601 seq3f1oleml 10608 seq3f1o 10609 exp3val 10633 xrmaxiflemcl 11410 summodclem2a 11546 zsumdc 11549 fsum3 11552 isumss 11556 fsum3cvg2 11559 fsum3ser 11562 fsumcl2lem 11563 fsumadd 11571 sumsnf 11574 sumsplitdc 11597 fsummulc2 11613 isumlessdc 11661 cvgratz 11697 prodmodclem3 11740 prodmodclem2a 11741 zproddc 11744 fprodseq 11748 fprodmul 11756 prodsnf 11757 eucalgval2 12221 lcmval 12231 pcmpt 12512 ennnfonelemg 12620 mulgval 13252 mulgfng 13254 elplyd 14977 dvply1 15001 lgsval 15245 lgsfvalg 15246 lgsfcl2 15247 lgscllem 15248 lgsval2lem 15251 lgsdir 15276 lgsdilem2 15277 lgsdi 15278 lgsne0 15279 subctctexmid 15645 | 
| Copyright terms: Public domain | W3C validator |