| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ifcldadc | Unicode version | ||
| Description: Conditional closure. (Contributed by Jim Kingdon, 11-Jan-2022.) |
| Ref | Expression |
|---|---|
| ifcldadc.1 |
|
| ifcldadc.2 |
|
| ifcldadc.dc |
|
| Ref | Expression |
|---|---|
| ifcldadc |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iftrue 3576 |
. . . 4
| |
| 2 | 1 | adantl 277 |
. . 3
|
| 3 | ifcldadc.1 |
. . 3
| |
| 4 | 2, 3 | eqeltrd 2282 |
. 2
|
| 5 | iffalse 3579 |
. . . 4
| |
| 6 | 5 | adantl 277 |
. . 3
|
| 7 | ifcldadc.2 |
. . 3
| |
| 8 | 6, 7 | eqeltrd 2282 |
. 2
|
| 9 | ifcldadc.dc |
. . 3
| |
| 10 | exmiddc 838 |
. . 3
| |
| 11 | 9, 10 | syl 14 |
. 2
|
| 12 | 4, 8, 11 | mpjaodan 800 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-11 1529 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-if 3572 |
| This theorem is referenced by: updjudhf 7183 omp1eomlem 7198 difinfsnlem 7203 ctmlemr 7212 ctssdclemn0 7214 ctssdc 7217 enumctlemm 7218 xaddf 9968 xaddval 9969 iseqf1olemqcl 10646 iseqf1olemnab 10648 iseqf1olemjpcl 10655 iseqf1olemqpcl 10656 seq3f1oleml 10663 seq3f1o 10664 exp3val 10688 ccatcl 11052 swrdclg 11106 xrmaxiflemcl 11589 summodclem2a 11725 zsumdc 11728 fsum3 11731 isumss 11735 fsum3cvg2 11738 fsum3ser 11741 fsumcl2lem 11742 fsumadd 11750 sumsnf 11753 sumsplitdc 11776 fsummulc2 11792 isumlessdc 11840 cvgratz 11876 prodmodclem3 11919 prodmodclem2a 11920 zproddc 11923 fprodseq 11927 fprodmul 11935 prodsnf 11936 eucalgval2 12408 lcmval 12418 pcmpt 12699 ennnfonelemg 12807 mulgval 13491 mulgfng 13493 elplyd 15246 dvply1 15270 lgsval 15514 lgsfvalg 15515 lgsfcl2 15516 lgscllem 15517 lgsval2lem 15520 lgsdir 15545 lgsdilem2 15546 lgsdi 15547 lgsne0 15548 subctctexmid 15974 |
| Copyright terms: Public domain | W3C validator |