Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ifcldadc | Unicode version |
Description: Conditional closure. (Contributed by Jim Kingdon, 11-Jan-2022.) |
Ref | Expression |
---|---|
ifcldadc.1 | |
ifcldadc.2 | |
ifcldadc.dc | DECID |
Ref | Expression |
---|---|
ifcldadc |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iftrue 3510 | . . . 4 | |
2 | 1 | adantl 275 | . . 3 |
3 | ifcldadc.1 | . . 3 | |
4 | 2, 3 | eqeltrd 2234 | . 2 |
5 | iffalse 3513 | . . . 4 | |
6 | 5 | adantl 275 | . . 3 |
7 | ifcldadc.2 | . . 3 | |
8 | 6, 7 | eqeltrd 2234 | . 2 |
9 | ifcldadc.dc | . . 3 DECID | |
10 | exmiddc 822 | . . 3 DECID | |
11 | 9, 10 | syl 14 | . 2 |
12 | 4, 8, 11 | mpjaodan 788 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wo 698 DECID wdc 820 wceq 1335 wcel 2128 cif 3505 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-11 1486 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-dc 821 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-if 3506 |
This theorem is referenced by: updjudhf 7013 omp1eomlem 7028 difinfsnlem 7033 ctmlemr 7042 ctssdclemn0 7044 ctssdc 7047 enumctlemm 7048 xaddf 9730 xaddval 9731 iseqf1olemqcl 10367 iseqf1olemnab 10369 iseqf1olemjpcl 10376 iseqf1olemqpcl 10377 seq3f1oleml 10384 seq3f1o 10385 exp3val 10403 xrmaxiflemcl 11124 summodclem2a 11260 zsumdc 11263 fsum3 11266 isumss 11270 fsum3cvg2 11273 fsum3ser 11276 fsumcl2lem 11277 fsumadd 11285 sumsnf 11288 sumsplitdc 11311 fsummulc2 11327 isumlessdc 11375 cvgratz 11411 prodmodclem3 11454 prodmodclem2a 11455 zproddc 11458 fprodseq 11462 fprodmul 11470 prodsnf 11471 eucalgval2 11910 lcmval 11920 ennnfonelemg 12104 subctctexmid 13534 |
Copyright terms: Public domain | W3C validator |