ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ifeq1dadc GIF version

Theorem ifeq1dadc 3603
Description: Conditional equality. (Contributed by Jeff Madsen, 2-Sep-2009.)
Hypotheses
Ref Expression
ifeq1dadc.1 ((𝜑𝜓) → 𝐴 = 𝐵)
ifeq1dadc.dc (𝜑DECID 𝜓)
Assertion
Ref Expression
ifeq1dadc (𝜑 → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐶))

Proof of Theorem ifeq1dadc
StepHypRef Expression
1 ifeq1dadc.1 . . 3 ((𝜑𝜓) → 𝐴 = 𝐵)
21ifeq1d 3590 . 2 ((𝜑𝜓) → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐶))
3 iffalse 3581 . . . 4 𝜓 → if(𝜓, 𝐴, 𝐶) = 𝐶)
4 iffalse 3581 . . . 4 𝜓 → if(𝜓, 𝐵, 𝐶) = 𝐶)
53, 4eqtr4d 2242 . . 3 𝜓 → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐶))
65adantl 277 . 2 ((𝜑 ∧ ¬ 𝜓) → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐶))
7 ifeq1dadc.dc . . 3 (𝜑DECID 𝜓)
8 exmiddc 838 . . 3 (DECID 𝜓 → (𝜓 ∨ ¬ 𝜓))
97, 8syl 14 . 2 (𝜑 → (𝜓 ∨ ¬ 𝜓))
102, 6, 9mpjaodan 800 1 (𝜑 → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐶))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 710  DECID wdc 836   = wceq 1373  ifcif 3573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-dc 837  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-rab 2494  df-v 2775  df-un 3172  df-if 3574
This theorem is referenced by:  sumeq2  11720  isumss  11752  prodeq2  11918  lgsval2lem  15537  lgsval4lem  15538  lgsneg  15551  lgsmod  15553  lgsdilem2  15563
  Copyright terms: Public domain W3C validator