| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ifeq1dadc | GIF version | ||
| Description: Conditional equality. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| Ref | Expression |
|---|---|
| ifeq1dadc.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝐴 = 𝐵) |
| ifeq1dadc.dc | ⊢ (𝜑 → DECID 𝜓) |
| Ref | Expression |
|---|---|
| ifeq1dadc | ⊢ (𝜑 → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ifeq1dadc.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝐴 = 𝐵) | |
| 2 | 1 | ifeq1d 3579 | . 2 ⊢ ((𝜑 ∧ 𝜓) → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐶)) |
| 3 | iffalse 3570 | . . . 4 ⊢ (¬ 𝜓 → if(𝜓, 𝐴, 𝐶) = 𝐶) | |
| 4 | iffalse 3570 | . . . 4 ⊢ (¬ 𝜓 → if(𝜓, 𝐵, 𝐶) = 𝐶) | |
| 5 | 3, 4 | eqtr4d 2232 | . . 3 ⊢ (¬ 𝜓 → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐶)) |
| 6 | 5 | adantl 277 | . 2 ⊢ ((𝜑 ∧ ¬ 𝜓) → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐶)) |
| 7 | ifeq1dadc.dc | . . 3 ⊢ (𝜑 → DECID 𝜓) | |
| 8 | exmiddc 837 | . . 3 ⊢ (DECID 𝜓 → (𝜓 ∨ ¬ 𝜓)) | |
| 9 | 7, 8 | syl 14 | . 2 ⊢ (𝜑 → (𝜓 ∨ ¬ 𝜓)) |
| 10 | 2, 6, 9 | mpjaodan 799 | 1 ⊢ (𝜑 → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐶)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∨ wo 709 DECID wdc 835 = wceq 1364 ifcif 3562 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rab 2484 df-v 2765 df-un 3161 df-if 3563 |
| This theorem is referenced by: sumeq2 11541 isumss 11573 prodeq2 11739 lgsval2lem 15335 lgsval4lem 15336 lgsneg 15349 lgsmod 15351 lgsdilem2 15361 |
| Copyright terms: Public domain | W3C validator |