![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ifeq1dadc | GIF version |
Description: Conditional equality. (Contributed by Jeff Madsen, 2-Sep-2009.) |
Ref | Expression |
---|---|
ifeq1dadc.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝐴 = 𝐵) |
ifeq1dadc.dc | ⊢ (𝜑 → DECID 𝜓) |
Ref | Expression |
---|---|
ifeq1dadc | ⊢ (𝜑 → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ifeq1dadc.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝐴 = 𝐵) | |
2 | 1 | ifeq1d 3563 | . 2 ⊢ ((𝜑 ∧ 𝜓) → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐶)) |
3 | iffalse 3554 | . . . 4 ⊢ (¬ 𝜓 → if(𝜓, 𝐴, 𝐶) = 𝐶) | |
4 | iffalse 3554 | . . . 4 ⊢ (¬ 𝜓 → if(𝜓, 𝐵, 𝐶) = 𝐶) | |
5 | 3, 4 | eqtr4d 2223 | . . 3 ⊢ (¬ 𝜓 → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐶)) |
6 | 5 | adantl 277 | . 2 ⊢ ((𝜑 ∧ ¬ 𝜓) → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐶)) |
7 | ifeq1dadc.dc | . . 3 ⊢ (𝜑 → DECID 𝜓) | |
8 | exmiddc 837 | . . 3 ⊢ (DECID 𝜓 → (𝜓 ∨ ¬ 𝜓)) | |
9 | 7, 8 | syl 14 | . 2 ⊢ (𝜑 → (𝜓 ∨ ¬ 𝜓)) |
10 | 2, 6, 9 | mpjaodan 799 | 1 ⊢ (𝜑 → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐶)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∨ wo 709 DECID wdc 835 = wceq 1363 ifcif 3546 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in2 616 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-ext 2169 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-tru 1366 df-nf 1471 df-sb 1773 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-rab 2474 df-v 2751 df-un 3145 df-if 3547 |
This theorem is referenced by: sumeq2 11381 isumss 11413 prodeq2 11579 lgsval2lem 14707 lgsval4lem 14708 lgsneg 14721 lgsmod 14723 lgsdilem2 14733 |
Copyright terms: Public domain | W3C validator |