ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ifeq1dadc GIF version

Theorem ifeq1dadc 3550
Description: Conditional equality. (Contributed by Jim Kingdon, 1-Jan-2022.)
Hypotheses
Ref Expression
ifeq1dadc.1 ((𝜑𝜓) → 𝐴 = 𝐵)
ifeq1dadc.dc (𝜑DECID 𝜓)
Assertion
Ref Expression
ifeq1dadc (𝜑 → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐶))

Proof of Theorem ifeq1dadc
StepHypRef Expression
1 ifeq1dadc.1 . . 3 ((𝜑𝜓) → 𝐴 = 𝐵)
21ifeq1d 3537 . 2 ((𝜑𝜓) → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐶))
3 iffalse 3528 . . . 4 𝜓 → if(𝜓, 𝐴, 𝐶) = 𝐶)
4 iffalse 3528 . . . 4 𝜓 → if(𝜓, 𝐵, 𝐶) = 𝐶)
53, 4eqtr4d 2201 . . 3 𝜓 → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐶))
65adantl 275 . 2 ((𝜑 ∧ ¬ 𝜓) → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐶))
7 ifeq1dadc.dc . . 3 (𝜑DECID 𝜓)
8 exmiddc 826 . . 3 (DECID 𝜓 → (𝜓 ∨ ¬ 𝜓))
97, 8syl 14 . 2 (𝜑 → (𝜓 ∨ ¬ 𝜓))
102, 6, 9mpjaodan 788 1 (𝜑 → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐶))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wo 698  DECID wdc 824   = wceq 1343  ifcif 3520
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-dc 825  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-rab 2453  df-v 2728  df-un 3120  df-if 3521
This theorem is referenced by:  sumeq2  11300  isumss  11332  prodeq2  11498  lgsval2lem  13551  lgsval4lem  13552  lgsneg  13565  lgsmod  13567  lgsdilem2  13577
  Copyright terms: Public domain W3C validator