![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ifeq1dadc | GIF version |
Description: Conditional equality. (Contributed by Jim Kingdon, 1-Jan-2022.) |
Ref | Expression |
---|---|
ifeq1dadc.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝐴 = 𝐵) |
ifeq1dadc.dc | ⊢ (𝜑 → DECID 𝜓) |
Ref | Expression |
---|---|
ifeq1dadc | ⊢ (𝜑 → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ifeq1dadc.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝐴 = 𝐵) | |
2 | 1 | ifeq1d 3428 | . 2 ⊢ ((𝜑 ∧ 𝜓) → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐶)) |
3 | iffalse 3421 | . . . 4 ⊢ (¬ 𝜓 → if(𝜓, 𝐴, 𝐶) = 𝐶) | |
4 | iffalse 3421 | . . . 4 ⊢ (¬ 𝜓 → if(𝜓, 𝐵, 𝐶) = 𝐶) | |
5 | 3, 4 | eqtr4d 2130 | . . 3 ⊢ (¬ 𝜓 → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐶)) |
6 | 5 | adantl 272 | . 2 ⊢ ((𝜑 ∧ ¬ 𝜓) → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐶)) |
7 | ifeq1dadc.dc | . . 3 ⊢ (𝜑 → DECID 𝜓) | |
8 | exmiddc 785 | . . 3 ⊢ (DECID 𝜓 → (𝜓 ∨ ¬ 𝜓)) | |
9 | 7, 8 | syl 14 | . 2 ⊢ (𝜑 → (𝜓 ∨ ¬ 𝜓)) |
10 | 2, 6, 9 | mpjaodan 750 | 1 ⊢ (𝜑 → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐶)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ∨ wo 667 DECID wdc 783 = wceq 1296 ifcif 3413 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in2 583 ax-io 668 ax-5 1388 ax-7 1389 ax-gen 1390 ax-ie1 1434 ax-ie2 1435 ax-8 1447 ax-10 1448 ax-11 1449 ax-i12 1450 ax-bndl 1451 ax-4 1452 ax-17 1471 ax-i9 1475 ax-ial 1479 ax-i5r 1480 ax-ext 2077 |
This theorem depends on definitions: df-bi 116 df-dc 784 df-tru 1299 df-nf 1402 df-sb 1700 df-clab 2082 df-cleq 2088 df-clel 2091 df-nfc 2224 df-rab 2379 df-v 2635 df-un 3017 df-if 3414 |
This theorem is referenced by: sumeq2 10902 isumss 10934 |
Copyright terms: Public domain | W3C validator |