| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cnviinm | Unicode version | ||
| Description: The converse of an intersection is the intersection of the converse. (Contributed by Jim Kingdon, 18-Dec-2018.) |
| Ref | Expression |
|---|---|
| cnviinm |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1w 2257 |
. . 3
| |
| 2 | 1 | cbvexv 1933 |
. 2
|
| 3 | eleq1w 2257 |
. . . 4
| |
| 4 | 3 | cbvexv 1933 |
. . 3
|
| 5 | relcnv 5048 |
. . . 4
| |
| 6 | r19.2m 3538 |
. . . . . . . 8
| |
| 7 | 6 | expcom 116 |
. . . . . . 7
|
| 8 | relcnv 5048 |
. . . . . . . . 9
| |
| 9 | df-rel 4671 |
. . . . . . . . 9
| |
| 10 | 8, 9 | mpbi 145 |
. . . . . . . 8
|
| 11 | 10 | a1i 9 |
. . . . . . 7
|
| 12 | 7, 11 | mprg 2554 |
. . . . . 6
|
| 13 | iinss 3969 |
. . . . . 6
| |
| 14 | 12, 13 | syl 14 |
. . . . 5
|
| 15 | df-rel 4671 |
. . . . 5
| |
| 16 | 14, 15 | sylibr 134 |
. . . 4
|
| 17 | vex 2766 |
. . . . . . . 8
| |
| 18 | vex 2766 |
. . . . . . . 8
| |
| 19 | 17, 18 | opex 4263 |
. . . . . . 7
|
| 20 | eliin 3922 |
. . . . . . 7
| |
| 21 | 19, 20 | ax-mp 5 |
. . . . . 6
|
| 22 | 18, 17 | opelcnv 4849 |
. . . . . 6
|
| 23 | 18, 17 | opex 4263 |
. . . . . . . 8
|
| 24 | eliin 3922 |
. . . . . . . 8
| |
| 25 | 23, 24 | ax-mp 5 |
. . . . . . 7
|
| 26 | 18, 17 | opelcnv 4849 |
. . . . . . . 8
|
| 27 | 26 | ralbii 2503 |
. . . . . . 7
|
| 28 | 25, 27 | bitri 184 |
. . . . . 6
|
| 29 | 21, 22, 28 | 3bitr4i 212 |
. . . . 5
|
| 30 | 29 | eqrelriv 4757 |
. . . 4
|
| 31 | 5, 16, 30 | sylancr 414 |
. . 3
|
| 32 | 4, 31 | sylbir 135 |
. 2
|
| 33 | 2, 32 | sylbi 121 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-iin 3920 df-br 4035 df-opab 4096 df-xp 4670 df-rel 4671 df-cnv 4672 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |