Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cnviinm | Unicode version |
Description: The converse of an intersection is the intersection of the converse. (Contributed by Jim Kingdon, 18-Dec-2018.) |
Ref | Expression |
---|---|
cnviinm |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1w 2231 | . . 3 | |
2 | 1 | cbvexv 1911 | . 2 |
3 | eleq1w 2231 | . . . 4 | |
4 | 3 | cbvexv 1911 | . . 3 |
5 | relcnv 4989 | . . . 4 | |
6 | r19.2m 3501 | . . . . . . . 8 | |
7 | 6 | expcom 115 | . . . . . . 7 |
8 | relcnv 4989 | . . . . . . . . 9 | |
9 | df-rel 4618 | . . . . . . . . 9 | |
10 | 8, 9 | mpbi 144 | . . . . . . . 8 |
11 | 10 | a1i 9 | . . . . . . 7 |
12 | 7, 11 | mprg 2527 | . . . . . 6 |
13 | iinss 3924 | . . . . . 6 | |
14 | 12, 13 | syl 14 | . . . . 5 |
15 | df-rel 4618 | . . . . 5 | |
16 | 14, 15 | sylibr 133 | . . . 4 |
17 | vex 2733 | . . . . . . . 8 | |
18 | vex 2733 | . . . . . . . 8 | |
19 | 17, 18 | opex 4214 | . . . . . . 7 |
20 | eliin 3878 | . . . . . . 7 | |
21 | 19, 20 | ax-mp 5 | . . . . . 6 |
22 | 18, 17 | opelcnv 4793 | . . . . . 6 |
23 | 18, 17 | opex 4214 | . . . . . . . 8 |
24 | eliin 3878 | . . . . . . . 8 | |
25 | 23, 24 | ax-mp 5 | . . . . . . 7 |
26 | 18, 17 | opelcnv 4793 | . . . . . . . 8 |
27 | 26 | ralbii 2476 | . . . . . . 7 |
28 | 25, 27 | bitri 183 | . . . . . 6 |
29 | 21, 22, 28 | 3bitr4i 211 | . . . . 5 |
30 | 29 | eqrelriv 4704 | . . . 4 |
31 | 5, 16, 30 | sylancr 412 | . . 3 |
32 | 4, 31 | sylbir 134 | . 2 |
33 | 2, 32 | sylbi 120 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wceq 1348 wex 1485 wcel 2141 wral 2448 wrex 2449 cvv 2730 wss 3121 cop 3586 ciin 3874 cxp 4609 ccnv 4610 wrel 4616 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-iin 3876 df-br 3990 df-opab 4051 df-xp 4617 df-rel 4618 df-cnv 4619 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |