ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnviinm Unicode version

Theorem cnviinm 5088
Description: The converse of an intersection is the intersection of the converse. (Contributed by Jim Kingdon, 18-Dec-2018.)
Assertion
Ref Expression
cnviinm  |-  ( E. y  y  e.  A  ->  `' |^|_ x  e.  A  B  =  |^|_ x  e.  A  `' B )
Distinct variable groups:    x, A    y, A
Allowed substitution hints:    B( x, y)

Proof of Theorem cnviinm
Dummy variables  a  b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1w 2201 . . 3  |-  ( y  =  a  ->  (
y  e.  A  <->  a  e.  A ) )
21cbvexv 1891 . 2  |-  ( E. y  y  e.  A  <->  E. a  a  e.  A
)
3 eleq1w 2201 . . . 4  |-  ( x  =  a  ->  (
x  e.  A  <->  a  e.  A ) )
43cbvexv 1891 . . 3  |-  ( E. x  x  e.  A  <->  E. a  a  e.  A
)
5 relcnv 4925 . . . 4  |-  Rel  `' |^|_
x  e.  A  B
6 r19.2m 3454 . . . . . . . 8  |-  ( ( E. x  x  e.  A  /\  A. x  e.  A  `' B  C_  ( _V  X.  _V ) )  ->  E. x  e.  A  `' B  C_  ( _V  X.  _V ) )
76expcom 115 . . . . . . 7  |-  ( A. x  e.  A  `' B  C_  ( _V  X.  _V )  ->  ( E. x  x  e.  A  ->  E. x  e.  A  `' B  C_  ( _V 
X.  _V ) ) )
8 relcnv 4925 . . . . . . . . 9  |-  Rel  `' B
9 df-rel 4554 . . . . . . . . 9  |-  ( Rel  `' B  <->  `' B  C_  ( _V 
X.  _V ) )
108, 9mpbi 144 . . . . . . . 8  |-  `' B  C_  ( _V  X.  _V )
1110a1i 9 . . . . . . 7  |-  ( x  e.  A  ->  `' B  C_  ( _V  X.  _V ) )
127, 11mprg 2492 . . . . . 6  |-  ( E. x  x  e.  A  ->  E. x  e.  A  `' B  C_  ( _V 
X.  _V ) )
13 iinss 3872 . . . . . 6  |-  ( E. x  e.  A  `' B  C_  ( _V  X.  _V )  ->  |^|_ x  e.  A  `' B  C_  ( _V  X.  _V ) )
1412, 13syl 14 . . . . 5  |-  ( E. x  x  e.  A  -> 
|^|_ x  e.  A  `' B  C_  ( _V 
X.  _V ) )
15 df-rel 4554 . . . . 5  |-  ( Rel  |^|_ x  e.  A  `' B 
<-> 
|^|_ x  e.  A  `' B  C_  ( _V 
X.  _V ) )
1614, 15sylibr 133 . . . 4  |-  ( E. x  x  e.  A  ->  Rel  |^|_ x  e.  A  `' B )
17 vex 2692 . . . . . . . 8  |-  b  e. 
_V
18 vex 2692 . . . . . . . 8  |-  a  e. 
_V
1917, 18opex 4159 . . . . . . 7  |-  <. b ,  a >.  e.  _V
20 eliin 3826 . . . . . . 7  |-  ( <.
b ,  a >.  e.  _V  ->  ( <. b ,  a >.  e.  |^|_ x  e.  A  B  <->  A. x  e.  A  <. b ,  a >.  e.  B
) )
2119, 20ax-mp 5 . . . . . 6  |-  ( <.
b ,  a >.  e.  |^|_ x  e.  A  B 
<-> 
A. x  e.  A  <. b ,  a >.  e.  B )
2218, 17opelcnv 4729 . . . . . 6  |-  ( <.
a ,  b >.  e.  `' |^|_ x  e.  A  B 
<-> 
<. b ,  a >.  e.  |^|_ x  e.  A  B )
2318, 17opex 4159 . . . . . . . 8  |-  <. a ,  b >.  e.  _V
24 eliin 3826 . . . . . . . 8  |-  ( <.
a ,  b >.  e.  _V  ->  ( <. a ,  b >.  e.  |^|_ x  e.  A  `' B  <->  A. x  e.  A  <. a ,  b >.  e.  `' B ) )
2523, 24ax-mp 5 . . . . . . 7  |-  ( <.
a ,  b >.  e.  |^|_ x  e.  A  `' B  <->  A. x  e.  A  <. a ,  b >.  e.  `' B )
2618, 17opelcnv 4729 . . . . . . . 8  |-  ( <.
a ,  b >.  e.  `' B  <->  <. b ,  a
>.  e.  B )
2726ralbii 2444 . . . . . . 7  |-  ( A. x  e.  A  <. a ,  b >.  e.  `' B 
<-> 
A. x  e.  A  <. b ,  a >.  e.  B )
2825, 27bitri 183 . . . . . 6  |-  ( <.
a ,  b >.  e.  |^|_ x  e.  A  `' B  <->  A. x  e.  A  <. b ,  a >.  e.  B )
2921, 22, 283bitr4i 211 . . . . 5  |-  ( <.
a ,  b >.  e.  `' |^|_ x  e.  A  B 
<-> 
<. a ,  b >.  e.  |^|_ x  e.  A  `' B )
3029eqrelriv 4640 . . . 4  |-  ( ( Rel  `' |^|_ x  e.  A  B  /\  Rel  |^|_ x  e.  A  `' B )  ->  `' |^|_
x  e.  A  B  =  |^|_ x  e.  A  `' B )
315, 16, 30sylancr 411 . . 3  |-  ( E. x  x  e.  A  ->  `' |^|_ x  e.  A  B  =  |^|_ x  e.  A  `' B )
324, 31sylbir 134 . 2  |-  ( E. a  a  e.  A  ->  `' |^|_ x  e.  A  B  =  |^|_ x  e.  A  `' B )
332, 32sylbi 120 1  |-  ( E. y  y  e.  A  ->  `' |^|_ x  e.  A  B  =  |^|_ x  e.  A  `' B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    = wceq 1332   E.wex 1469    e. wcel 1481   A.wral 2417   E.wrex 2418   _Vcvv 2689    C_ wss 3076   <.cop 3535   |^|_ciin 3822    X. cxp 4545   `'ccnv 4546   Rel wrel 4552
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rex 2423  df-v 2691  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-iin 3824  df-br 3938  df-opab 3998  df-xp 4553  df-rel 4554  df-cnv 4555
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator