| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cnviinm | Unicode version | ||
| Description: The converse of an intersection is the intersection of the converse. (Contributed by Jim Kingdon, 18-Dec-2018.) |
| Ref | Expression |
|---|---|
| cnviinm |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1w 2268 |
. . 3
| |
| 2 | 1 | cbvexv 1943 |
. 2
|
| 3 | eleq1w 2268 |
. . . 4
| |
| 4 | 3 | cbvexv 1943 |
. . 3
|
| 5 | relcnv 5079 |
. . . 4
| |
| 6 | r19.2m 3555 |
. . . . . . . 8
| |
| 7 | 6 | expcom 116 |
. . . . . . 7
|
| 8 | relcnv 5079 |
. . . . . . . . 9
| |
| 9 | df-rel 4700 |
. . . . . . . . 9
| |
| 10 | 8, 9 | mpbi 145 |
. . . . . . . 8
|
| 11 | 10 | a1i 9 |
. . . . . . 7
|
| 12 | 7, 11 | mprg 2565 |
. . . . . 6
|
| 13 | iinss 3993 |
. . . . . 6
| |
| 14 | 12, 13 | syl 14 |
. . . . 5
|
| 15 | df-rel 4700 |
. . . . 5
| |
| 16 | 14, 15 | sylibr 134 |
. . . 4
|
| 17 | vex 2779 |
. . . . . . . 8
| |
| 18 | vex 2779 |
. . . . . . . 8
| |
| 19 | 17, 18 | opex 4291 |
. . . . . . 7
|
| 20 | eliin 3946 |
. . . . . . 7
| |
| 21 | 19, 20 | ax-mp 5 |
. . . . . 6
|
| 22 | 18, 17 | opelcnv 4878 |
. . . . . 6
|
| 23 | 18, 17 | opex 4291 |
. . . . . . . 8
|
| 24 | eliin 3946 |
. . . . . . . 8
| |
| 25 | 23, 24 | ax-mp 5 |
. . . . . . 7
|
| 26 | 18, 17 | opelcnv 4878 |
. . . . . . . 8
|
| 27 | 26 | ralbii 2514 |
. . . . . . 7
|
| 28 | 25, 27 | bitri 184 |
. . . . . 6
|
| 29 | 21, 22, 28 | 3bitr4i 212 |
. . . . 5
|
| 30 | 29 | eqrelriv 4786 |
. . . 4
|
| 31 | 5, 16, 30 | sylancr 414 |
. . 3
|
| 32 | 4, 31 | sylbir 135 |
. 2
|
| 33 | 2, 32 | sylbi 121 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-iin 3944 df-br 4060 df-opab 4122 df-xp 4699 df-rel 4700 df-cnv 4701 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |