| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > cnviinm | Unicode version | ||
| Description: The converse of an intersection is the intersection of the converse. (Contributed by Jim Kingdon, 18-Dec-2018.) | 
| Ref | Expression | 
|---|---|
| cnviinm | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eleq1w 2257 | 
. . 3
 | |
| 2 | 1 | cbvexv 1933 | 
. 2
 | 
| 3 | eleq1w 2257 | 
. . . 4
 | |
| 4 | 3 | cbvexv 1933 | 
. . 3
 | 
| 5 | relcnv 5047 | 
. . . 4
 | |
| 6 | r19.2m 3537 | 
. . . . . . . 8
 | |
| 7 | 6 | expcom 116 | 
. . . . . . 7
 | 
| 8 | relcnv 5047 | 
. . . . . . . . 9
 | |
| 9 | df-rel 4670 | 
. . . . . . . . 9
 | |
| 10 | 8, 9 | mpbi 145 | 
. . . . . . . 8
 | 
| 11 | 10 | a1i 9 | 
. . . . . . 7
 | 
| 12 | 7, 11 | mprg 2554 | 
. . . . . 6
 | 
| 13 | iinss 3968 | 
. . . . . 6
 | |
| 14 | 12, 13 | syl 14 | 
. . . . 5
 | 
| 15 | df-rel 4670 | 
. . . . 5
 | |
| 16 | 14, 15 | sylibr 134 | 
. . . 4
 | 
| 17 | vex 2766 | 
. . . . . . . 8
 | |
| 18 | vex 2766 | 
. . . . . . . 8
 | |
| 19 | 17, 18 | opex 4262 | 
. . . . . . 7
 | 
| 20 | eliin 3921 | 
. . . . . . 7
 | |
| 21 | 19, 20 | ax-mp 5 | 
. . . . . 6
 | 
| 22 | 18, 17 | opelcnv 4848 | 
. . . . . 6
 | 
| 23 | 18, 17 | opex 4262 | 
. . . . . . . 8
 | 
| 24 | eliin 3921 | 
. . . . . . . 8
 | |
| 25 | 23, 24 | ax-mp 5 | 
. . . . . . 7
 | 
| 26 | 18, 17 | opelcnv 4848 | 
. . . . . . . 8
 | 
| 27 | 26 | ralbii 2503 | 
. . . . . . 7
 | 
| 28 | 25, 27 | bitri 184 | 
. . . . . 6
 | 
| 29 | 21, 22, 28 | 3bitr4i 212 | 
. . . . 5
 | 
| 30 | 29 | eqrelriv 4756 | 
. . . 4
 | 
| 31 | 5, 16, 30 | sylancr 414 | 
. . 3
 | 
| 32 | 4, 31 | sylbir 135 | 
. 2
 | 
| 33 | 2, 32 | sylbi 121 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-iin 3919 df-br 4034 df-opab 4095 df-xp 4669 df-rel 4670 df-cnv 4671 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |