Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cnviinm | Unicode version |
Description: The converse of an intersection is the intersection of the converse. (Contributed by Jim Kingdon, 18-Dec-2018.) |
Ref | Expression |
---|---|
cnviinm |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1w 2227 | . . 3 | |
2 | 1 | cbvexv 1906 | . 2 |
3 | eleq1w 2227 | . . . 4 | |
4 | 3 | cbvexv 1906 | . . 3 |
5 | relcnv 4982 | . . . 4 | |
6 | r19.2m 3495 | . . . . . . . 8 | |
7 | 6 | expcom 115 | . . . . . . 7 |
8 | relcnv 4982 | . . . . . . . . 9 | |
9 | df-rel 4611 | . . . . . . . . 9 | |
10 | 8, 9 | mpbi 144 | . . . . . . . 8 |
11 | 10 | a1i 9 | . . . . . . 7 |
12 | 7, 11 | mprg 2523 | . . . . . 6 |
13 | iinss 3917 | . . . . . 6 | |
14 | 12, 13 | syl 14 | . . . . 5 |
15 | df-rel 4611 | . . . . 5 | |
16 | 14, 15 | sylibr 133 | . . . 4 |
17 | vex 2729 | . . . . . . . 8 | |
18 | vex 2729 | . . . . . . . 8 | |
19 | 17, 18 | opex 4207 | . . . . . . 7 |
20 | eliin 3871 | . . . . . . 7 | |
21 | 19, 20 | ax-mp 5 | . . . . . 6 |
22 | 18, 17 | opelcnv 4786 | . . . . . 6 |
23 | 18, 17 | opex 4207 | . . . . . . . 8 |
24 | eliin 3871 | . . . . . . . 8 | |
25 | 23, 24 | ax-mp 5 | . . . . . . 7 |
26 | 18, 17 | opelcnv 4786 | . . . . . . . 8 |
27 | 26 | ralbii 2472 | . . . . . . 7 |
28 | 25, 27 | bitri 183 | . . . . . 6 |
29 | 21, 22, 28 | 3bitr4i 211 | . . . . 5 |
30 | 29 | eqrelriv 4697 | . . . 4 |
31 | 5, 16, 30 | sylancr 411 | . . 3 |
32 | 4, 31 | sylbir 134 | . 2 |
33 | 2, 32 | sylbi 120 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wceq 1343 wex 1480 wcel 2136 wral 2444 wrex 2445 cvv 2726 wss 3116 cop 3579 ciin 3867 cxp 4602 ccnv 4603 wrel 4609 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-iin 3869 df-br 3983 df-opab 4044 df-xp 4610 df-rel 4611 df-cnv 4612 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |