ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iununir Unicode version

Theorem iununir 4049
Description: A relationship involving union and indexed union. Exercise 25 of [Enderton] p. 33 but with biconditional changed to implication. (Contributed by Jim Kingdon, 19-Aug-2018.)
Assertion
Ref Expression
iununir  |-  ( ( A  u.  U. B
)  =  U_ x  e.  B  ( A  u.  x )  ->  ( B  =  (/)  ->  A  =  (/) ) )
Distinct variable groups:    x, A    x, B

Proof of Theorem iununir
StepHypRef Expression
1 unieq 3897 . . . . . 6  |-  ( B  =  (/)  ->  U. B  =  U. (/) )
2 uni0 3915 . . . . . 6  |-  U. (/)  =  (/)
31, 2eqtrdi 2278 . . . . 5  |-  ( B  =  (/)  ->  U. B  =  (/) )
43uneq2d 3358 . . . 4  |-  ( B  =  (/)  ->  ( A  u.  U. B )  =  ( A  u.  (/) ) )
5 un0 3525 . . . 4  |-  ( A  u.  (/) )  =  A
64, 5eqtrdi 2278 . . 3  |-  ( B  =  (/)  ->  ( A  u.  U. B )  =  A )
7 iuneq1 3978 . . . 4  |-  ( B  =  (/)  ->  U_ x  e.  B  ( A  u.  x )  =  U_ x  e.  (/)  ( A  u.  x ) )
8 0iun 4023 . . . 4  |-  U_ x  e.  (/)  ( A  u.  x )  =  (/)
97, 8eqtrdi 2278 . . 3  |-  ( B  =  (/)  ->  U_ x  e.  B  ( A  u.  x )  =  (/) )
106, 9eqeq12d 2244 . 2  |-  ( B  =  (/)  ->  ( ( A  u.  U. B
)  =  U_ x  e.  B  ( A  u.  x )  <->  A  =  (/) ) )
1110biimpcd 159 1  |-  ( ( A  u.  U. B
)  =  U_ x  e.  B  ( A  u.  x )  ->  ( B  =  (/)  ->  A  =  (/) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1395    u. cun 3195   (/)c0 3491   U.cuni 3888   U_ciun 3965
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-sn 3672  df-uni 3889  df-iun 3967
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator