ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iununir Unicode version

Theorem iununir 3818
Description: A relationship involving union and indexed union. Exercise 25 of [Enderton] p. 33 but with biconditional changed to implication. (Contributed by Jim Kingdon, 19-Aug-2018.)
Assertion
Ref Expression
iununir  |-  ( ( A  u.  U. B
)  =  U_ x  e.  B  ( A  u.  x )  ->  ( B  =  (/)  ->  A  =  (/) ) )
Distinct variable groups:    x, A    x, B

Proof of Theorem iununir
StepHypRef Expression
1 unieq 3668 . . . . . 6  |-  ( B  =  (/)  ->  U. B  =  U. (/) )
2 uni0 3686 . . . . . 6  |-  U. (/)  =  (/)
31, 2syl6eq 2137 . . . . 5  |-  ( B  =  (/)  ->  U. B  =  (/) )
43uneq2d 3155 . . . 4  |-  ( B  =  (/)  ->  ( A  u.  U. B )  =  ( A  u.  (/) ) )
5 un0 3320 . . . 4  |-  ( A  u.  (/) )  =  A
64, 5syl6eq 2137 . . 3  |-  ( B  =  (/)  ->  ( A  u.  U. B )  =  A )
7 iuneq1 3749 . . . 4  |-  ( B  =  (/)  ->  U_ x  e.  B  ( A  u.  x )  =  U_ x  e.  (/)  ( A  u.  x ) )
8 0iun 3793 . . . 4  |-  U_ x  e.  (/)  ( A  u.  x )  =  (/)
97, 8syl6eq 2137 . . 3  |-  ( B  =  (/)  ->  U_ x  e.  B  ( A  u.  x )  =  (/) )
106, 9eqeq12d 2103 . 2  |-  ( B  =  (/)  ->  ( ( A  u.  U. B
)  =  U_ x  e.  B  ( A  u.  x )  <->  A  =  (/) ) )
1110biimpcd 158 1  |-  ( ( A  u.  U. B
)  =  U_ x  e.  B  ( A  u.  x )  ->  ( B  =  (/)  ->  A  =  (/) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1290    u. cun 2998   (/)c0 3287   U.cuni 3659   U_ciun 3736
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 580  ax-in2 581  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071
This theorem depends on definitions:  df-bi 116  df-tru 1293  df-fal 1296  df-nf 1396  df-sb 1694  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ral 2365  df-rex 2366  df-v 2622  df-dif 3002  df-un 3004  df-in 3006  df-ss 3013  df-nul 3288  df-sn 3456  df-uni 3660  df-iun 3738
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator