ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iununir Unicode version

Theorem iununir 4025
Description: A relationship involving union and indexed union. Exercise 25 of [Enderton] p. 33 but with biconditional changed to implication. (Contributed by Jim Kingdon, 19-Aug-2018.)
Assertion
Ref Expression
iununir  |-  ( ( A  u.  U. B
)  =  U_ x  e.  B  ( A  u.  x )  ->  ( B  =  (/)  ->  A  =  (/) ) )
Distinct variable groups:    x, A    x, B

Proof of Theorem iununir
StepHypRef Expression
1 unieq 3873 . . . . . 6  |-  ( B  =  (/)  ->  U. B  =  U. (/) )
2 uni0 3891 . . . . . 6  |-  U. (/)  =  (/)
31, 2eqtrdi 2256 . . . . 5  |-  ( B  =  (/)  ->  U. B  =  (/) )
43uneq2d 3335 . . . 4  |-  ( B  =  (/)  ->  ( A  u.  U. B )  =  ( A  u.  (/) ) )
5 un0 3502 . . . 4  |-  ( A  u.  (/) )  =  A
64, 5eqtrdi 2256 . . 3  |-  ( B  =  (/)  ->  ( A  u.  U. B )  =  A )
7 iuneq1 3954 . . . 4  |-  ( B  =  (/)  ->  U_ x  e.  B  ( A  u.  x )  =  U_ x  e.  (/)  ( A  u.  x ) )
8 0iun 3999 . . . 4  |-  U_ x  e.  (/)  ( A  u.  x )  =  (/)
97, 8eqtrdi 2256 . . 3  |-  ( B  =  (/)  ->  U_ x  e.  B  ( A  u.  x )  =  (/) )
106, 9eqeq12d 2222 . 2  |-  ( B  =  (/)  ->  ( ( A  u.  U. B
)  =  U_ x  e.  B  ( A  u.  x )  <->  A  =  (/) ) )
1110biimpcd 159 1  |-  ( ( A  u.  U. B
)  =  U_ x  e.  B  ( A  u.  x )  ->  ( B  =  (/)  ->  A  =  (/) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    u. cun 3172   (/)c0 3468   U.cuni 3864   U_ciun 3941
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-sn 3649  df-uni 3865  df-iun 3943
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator