Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > iununir | Unicode version |
Description: A relationship involving union and indexed union. Exercise 25 of [Enderton] p. 33 but with biconditional changed to implication. (Contributed by Jim Kingdon, 19-Aug-2018.) |
Ref | Expression |
---|---|
iununir |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unieq 3798 | . . . . . 6 | |
2 | uni0 3816 | . . . . . 6 | |
3 | 1, 2 | eqtrdi 2215 | . . . . 5 |
4 | 3 | uneq2d 3276 | . . . 4 |
5 | un0 3442 | . . . 4 | |
6 | 4, 5 | eqtrdi 2215 | . . 3 |
7 | iuneq1 3879 | . . . 4 | |
8 | 0iun 3923 | . . . 4 | |
9 | 7, 8 | eqtrdi 2215 | . . 3 |
10 | 6, 9 | eqeq12d 2180 | . 2 |
11 | 10 | biimpcd 158 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1343 cun 3114 c0 3409 cuni 3789 ciun 3866 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-sn 3582 df-uni 3790 df-iun 3868 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |