| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > iununir | Unicode version | ||
| Description: A relationship involving union and indexed union. Exercise 25 of [Enderton] p. 33 but with biconditional changed to implication. (Contributed by Jim Kingdon, 19-Aug-2018.) | 
| Ref | Expression | 
|---|---|
| iununir | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | unieq 3848 | 
. . . . . 6
 | |
| 2 | uni0 3866 | 
. . . . . 6
 | |
| 3 | 1, 2 | eqtrdi 2245 | 
. . . . 5
 | 
| 4 | 3 | uneq2d 3317 | 
. . . 4
 | 
| 5 | un0 3484 | 
. . . 4
 | |
| 6 | 4, 5 | eqtrdi 2245 | 
. . 3
 | 
| 7 | iuneq1 3929 | 
. . . 4
 | |
| 8 | 0iun 3974 | 
. . . 4
 | |
| 9 | 7, 8 | eqtrdi 2245 | 
. . 3
 | 
| 10 | 6, 9 | eqeq12d 2211 | 
. 2
 | 
| 11 | 10 | biimpcd 159 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-sn 3628 df-uni 3840 df-iun 3918 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |