ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imaeq1d Unicode version

Theorem imaeq1d 4920
Description: Equality theorem for image. (Contributed by FL, 15-Dec-2006.)
Hypothesis
Ref Expression
imaeq1d.1  |-  ( ph  ->  A  =  B )
Assertion
Ref Expression
imaeq1d  |-  ( ph  ->  ( A " C
)  =  ( B
" C ) )

Proof of Theorem imaeq1d
StepHypRef Expression
1 imaeq1d.1 . 2  |-  ( ph  ->  A  =  B )
2 imaeq1 4916 . 2  |-  ( A  =  B  ->  ( A " C )  =  ( B " C
) )
31, 2syl 14 1  |-  ( ph  ->  ( A " C
)  =  ( B
" C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1332   "cima 4582
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-ext 2136
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1740  df-clab 2141  df-cleq 2147  df-clel 2150  df-nfc 2285  df-v 2711  df-un 3102  df-in 3104  df-ss 3111  df-sn 3562  df-pr 3563  df-op 3565  df-br 3962  df-opab 4022  df-cnv 4587  df-dm 4589  df-rn 4590  df-res 4591  df-ima 4592
This theorem is referenced by:  imaeq12d  4922  nfimad  4930  f1imacnv  5424  foimacnv  5425  suppssof1  6039  ssenen  6785  iscn  12536
  Copyright terms: Public domain W3C validator