ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imaeq1d Unicode version

Theorem imaeq1d 4836
Description: Equality theorem for image. (Contributed by FL, 15-Dec-2006.)
Hypothesis
Ref Expression
imaeq1d.1  |-  ( ph  ->  A  =  B )
Assertion
Ref Expression
imaeq1d  |-  ( ph  ->  ( A " C
)  =  ( B
" C ) )

Proof of Theorem imaeq1d
StepHypRef Expression
1 imaeq1d.1 . 2  |-  ( ph  ->  A  =  B )
2 imaeq1 4832 . 2  |-  ( A  =  B  ->  ( A " C )  =  ( B " C
) )
31, 2syl 14 1  |-  ( ph  ->  ( A " C
)  =  ( B
" C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1312   "cima 4500
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1404  ax-7 1405  ax-gen 1406  ax-ie1 1450  ax-ie2 1451  ax-8 1463  ax-10 1464  ax-11 1465  ax-i12 1466  ax-bndl 1467  ax-4 1468  ax-17 1487  ax-i9 1491  ax-ial 1495  ax-i5r 1496  ax-ext 2095
This theorem depends on definitions:  df-bi 116  df-3an 945  df-tru 1315  df-nf 1418  df-sb 1717  df-clab 2100  df-cleq 2106  df-clel 2109  df-nfc 2242  df-v 2657  df-un 3039  df-in 3041  df-ss 3048  df-sn 3497  df-pr 3498  df-op 3500  df-br 3894  df-opab 3948  df-cnv 4505  df-dm 4507  df-rn 4508  df-res 4509  df-ima 4510
This theorem is referenced by:  imaeq12d  4838  nfimad  4846  f1imacnv  5338  foimacnv  5339  suppssof1  5951  ssenen  6696  iscn  12202
  Copyright terms: Public domain W3C validator