ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imaeq1d Unicode version

Theorem imaeq1d 4945
Description: Equality theorem for image. (Contributed by FL, 15-Dec-2006.)
Hypothesis
Ref Expression
imaeq1d.1  |-  ( ph  ->  A  =  B )
Assertion
Ref Expression
imaeq1d  |-  ( ph  ->  ( A " C
)  =  ( B
" C ) )

Proof of Theorem imaeq1d
StepHypRef Expression
1 imaeq1d.1 . 2  |-  ( ph  ->  A  =  B )
2 imaeq1 4941 . 2  |-  ( A  =  B  ->  ( A " C )  =  ( B " C
) )
31, 2syl 14 1  |-  ( ph  ->  ( A " C
)  =  ( B
" C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1343   "cima 4607
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-cnv 4612  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617
This theorem is referenced by:  imaeq12d  4947  nfimad  4955  f1imacnv  5449  foimacnv  5450  suppssof1  6067  ssenen  6817  1arith  12297  iscn  12837
  Copyright terms: Public domain W3C validator