ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rneqd Unicode version

Theorem rneqd 4908
Description: Equality deduction for range. (Contributed by NM, 4-Mar-2004.)
Hypothesis
Ref Expression
rneqd.1  |-  ( ph  ->  A  =  B )
Assertion
Ref Expression
rneqd  |-  ( ph  ->  ran  A  =  ran  B )

Proof of Theorem rneqd
StepHypRef Expression
1 rneqd.1 . 2  |-  ( ph  ->  A  =  B )
2 rneq 4906 . 2  |-  ( A  =  B  ->  ran  A  =  ran  B )
31, 2syl 14 1  |-  ( ph  ->  ran  A  =  ran  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373   ran crn 4677
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-sn 3639  df-pr 3640  df-op 3642  df-br 4046  df-opab 4107  df-cnv 4684  df-dm 4686  df-rn 4687
This theorem is referenced by:  resima2  4994  imaeq1  5018  imaeq2  5019  mptimass  5036  resiima  5041  elxp4  5171  elxp5  5172  funimacnv  5351  funimaexg  5359  fnima  5396  fnrnfv  5627  2ndvalg  6231  fo2nd  6246  f2ndres  6248  en1  6893  xpassen  6927  xpdom2  6928  sbthlemi4  7064  djudom  7197  exmidfodomrlemim  7311  seqeq1  10597  seqeq2  10598  seqeq3  10599  seq3val  10607  seqvalcd  10608  s1rn  11075  ennnfonelemex  12818  ennnfonelemf1  12822  restval  13110  restid2  13113  prdsex  13134  prdsval  13138  imasival  13171  conjsubg  13646  rnrhmsubrg  14047  tgrest  14674  txvalex  14759  txval  14760  mopnval  14947  edgvalg  15687  edgopval  15689  edgstruct  15691
  Copyright terms: Public domain W3C validator