ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rneqd Unicode version

Theorem rneqd 4926
Description: Equality deduction for range. (Contributed by NM, 4-Mar-2004.)
Hypothesis
Ref Expression
rneqd.1  |-  ( ph  ->  A  =  B )
Assertion
Ref Expression
rneqd  |-  ( ph  ->  ran  A  =  ran  B )

Proof of Theorem rneqd
StepHypRef Expression
1 rneqd.1 . 2  |-  ( ph  ->  A  =  B )
2 rneq 4924 . 2  |-  ( A  =  B  ->  ran  A  =  ran  B )
31, 2syl 14 1  |-  ( ph  ->  ran  A  =  ran  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373   ran crn 4694
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-sn 3649  df-pr 3650  df-op 3652  df-br 4060  df-opab 4122  df-cnv 4701  df-dm 4703  df-rn 4704
This theorem is referenced by:  resima2  5012  imaeq1  5036  imaeq2  5037  mptimass  5054  resiima  5059  elxp4  5189  elxp5  5190  funimacnv  5369  funimaexg  5377  fnima  5414  fnrnfv  5648  2ndvalg  6252  fo2nd  6267  f2ndres  6269  en1  6914  xpassen  6950  xpdom2  6951  sbthlemi4  7088  djudom  7221  exmidfodomrlemim  7340  seqeq1  10632  seqeq2  10633  seqeq3  10634  seq3val  10642  seqvalcd  10643  s1rn  11110  ennnfonelemex  12900  ennnfonelemf1  12904  restval  13192  restid2  13195  prdsex  13216  prdsval  13220  imasival  13253  conjsubg  13728  rnrhmsubrg  14129  tgrest  14756  txvalex  14841  txval  14842  mopnval  15029  edgvalg  15771  edgopval  15773  edgstruct  15775
  Copyright terms: Public domain W3C validator