ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rneqd Unicode version

Theorem rneqd 4907
Description: Equality deduction for range. (Contributed by NM, 4-Mar-2004.)
Hypothesis
Ref Expression
rneqd.1  |-  ( ph  ->  A  =  B )
Assertion
Ref Expression
rneqd  |-  ( ph  ->  ran  A  =  ran  B )

Proof of Theorem rneqd
StepHypRef Expression
1 rneqd.1 . 2  |-  ( ph  ->  A  =  B )
2 rneq 4905 . 2  |-  ( A  =  B  ->  ran  A  =  ran  B )
31, 2syl 14 1  |-  ( ph  ->  ran  A  =  ran  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373   ran crn 4676
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-sn 3639  df-pr 3640  df-op 3642  df-br 4045  df-opab 4106  df-cnv 4683  df-dm 4685  df-rn 4686
This theorem is referenced by:  resima2  4993  imaeq1  5017  imaeq2  5018  mptimass  5035  resiima  5040  elxp4  5170  elxp5  5171  funimacnv  5350  funimaexg  5358  fnima  5394  fnrnfv  5625  2ndvalg  6229  fo2nd  6244  f2ndres  6246  en1  6891  xpassen  6925  xpdom2  6926  sbthlemi4  7062  djudom  7195  exmidfodomrlemim  7309  seqeq1  10595  seqeq2  10596  seqeq3  10597  seq3val  10605  seqvalcd  10606  s1rn  11072  ennnfonelemex  12785  ennnfonelemf1  12789  restval  13077  restid2  13080  prdsex  13101  prdsval  13105  imasival  13138  conjsubg  13613  rnrhmsubrg  14014  tgrest  14641  txvalex  14726  txval  14727  mopnval  14914  edgvalg  15654  edgopval  15656  edgstruct  15658
  Copyright terms: Public domain W3C validator