ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reseq1 Unicode version

Theorem reseq1 4953
Description: Equality theorem for restrictions. (Contributed by NM, 7-Aug-1994.)
Assertion
Ref Expression
reseq1  |-  ( A  =  B  ->  ( A  |`  C )  =  ( B  |`  C ) )

Proof of Theorem reseq1
StepHypRef Expression
1 ineq1 3367 . 2  |-  ( A  =  B  ->  ( A  i^i  ( C  X.  _V ) )  =  ( B  i^i  ( C  X.  _V ) ) )
2 df-res 4687 . 2  |-  ( A  |`  C )  =  ( A  i^i  ( C  X.  _V ) )
3 df-res 4687 . 2  |-  ( B  |`  C )  =  ( B  i^i  ( C  X.  _V ) )
41, 2, 33eqtr4g 2263 1  |-  ( A  =  B  ->  ( A  |`  C )  =  ( B  |`  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373   _Vcvv 2772    i^i cin 3165    X. cxp 4673    |` cres 4677
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774  df-in 3172  df-res 4687
This theorem is referenced by:  reseq1i  4955  reseq1d  4958  imaeq1  5017  relcoi1  5214  tfr0dm  6408  tfrlemiex  6417  tfr1onlemex  6433  tfr1onlemaccex  6434  tfrcllemsucaccv  6440  tfrcllembxssdm  6442  tfrcllemex  6446  tfrcllemaccex  6447  tfrcllemres  6448  pmresg  6763  lmbr  14685
  Copyright terms: Public domain W3C validator