ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reseq1 Unicode version

Theorem reseq1 4771
Description: Equality theorem for restrictions. (Contributed by NM, 7-Aug-1994.)
Assertion
Ref Expression
reseq1  |-  ( A  =  B  ->  ( A  |`  C )  =  ( B  |`  C ) )

Proof of Theorem reseq1
StepHypRef Expression
1 ineq1 3236 . 2  |-  ( A  =  B  ->  ( A  i^i  ( C  X.  _V ) )  =  ( B  i^i  ( C  X.  _V ) ) )
2 df-res 4511 . 2  |-  ( A  |`  C )  =  ( A  i^i  ( C  X.  _V ) )
3 df-res 4511 . 2  |-  ( B  |`  C )  =  ( B  i^i  ( C  X.  _V ) )
41, 2, 33eqtr4g 2172 1  |-  ( A  =  B  ->  ( A  |`  C )  =  ( B  |`  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1314   _Vcvv 2657    i^i cin 3036    X. cxp 4497    |` cres 4501
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097
This theorem depends on definitions:  df-bi 116  df-tru 1317  df-nf 1420  df-sb 1719  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-v 2659  df-in 3043  df-res 4511
This theorem is referenced by:  reseq1i  4773  reseq1d  4776  imaeq1  4834  relcoi1  5028  tfr0dm  6173  tfrlemiex  6182  tfr1onlemex  6198  tfr1onlemaccex  6199  tfrcllemsucaccv  6205  tfrcllembxssdm  6207  tfrcllemex  6211  tfrcllemaccex  6212  tfrcllemres  6213  pmresg  6524  lmbr  12224
  Copyright terms: Public domain W3C validator