ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reseq1 Unicode version

Theorem reseq1 4902
Description: Equality theorem for restrictions. (Contributed by NM, 7-Aug-1994.)
Assertion
Ref Expression
reseq1  |-  ( A  =  B  ->  ( A  |`  C )  =  ( B  |`  C ) )

Proof of Theorem reseq1
StepHypRef Expression
1 ineq1 3330 . 2  |-  ( A  =  B  ->  ( A  i^i  ( C  X.  _V ) )  =  ( B  i^i  ( C  X.  _V ) ) )
2 df-res 4639 . 2  |-  ( A  |`  C )  =  ( A  i^i  ( C  X.  _V ) )
3 df-res 4639 . 2  |-  ( B  |`  C )  =  ( B  i^i  ( C  X.  _V ) )
41, 2, 33eqtr4g 2235 1  |-  ( A  =  B  ->  ( A  |`  C )  =  ( B  |`  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1353   _Vcvv 2738    i^i cin 3129    X. cxp 4625    |` cres 4629
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2740  df-in 3136  df-res 4639
This theorem is referenced by:  reseq1i  4904  reseq1d  4907  imaeq1  4966  relcoi1  5161  tfr0dm  6323  tfrlemiex  6332  tfr1onlemex  6348  tfr1onlemaccex  6349  tfrcllemsucaccv  6355  tfrcllembxssdm  6357  tfrcllemex  6361  tfrcllemaccex  6362  tfrcllemres  6363  pmresg  6676  lmbr  13716
  Copyright terms: Public domain W3C validator