Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > reseq1 | Unicode version |
Description: Equality theorem for restrictions. (Contributed by NM, 7-Aug-1994.) |
Ref | Expression |
---|---|
reseq1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ineq1 3316 | . 2 | |
2 | df-res 4616 | . 2 | |
3 | df-res 4616 | . 2 | |
4 | 1, 2, 3 | 3eqtr4g 2224 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1343 cvv 2726 cin 3115 cxp 4602 cres 4606 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-in 3122 df-res 4616 |
This theorem is referenced by: reseq1i 4880 reseq1d 4883 imaeq1 4941 relcoi1 5135 tfr0dm 6290 tfrlemiex 6299 tfr1onlemex 6315 tfr1onlemaccex 6316 tfrcllemsucaccv 6322 tfrcllembxssdm 6324 tfrcllemex 6328 tfrcllemaccex 6329 tfrcllemres 6330 pmresg 6642 lmbr 12863 |
Copyright terms: Public domain | W3C validator |