ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reseq1 Unicode version

Theorem reseq1 4940
Description: Equality theorem for restrictions. (Contributed by NM, 7-Aug-1994.)
Assertion
Ref Expression
reseq1  |-  ( A  =  B  ->  ( A  |`  C )  =  ( B  |`  C ) )

Proof of Theorem reseq1
StepHypRef Expression
1 ineq1 3357 . 2  |-  ( A  =  B  ->  ( A  i^i  ( C  X.  _V ) )  =  ( B  i^i  ( C  X.  _V ) ) )
2 df-res 4675 . 2  |-  ( A  |`  C )  =  ( A  i^i  ( C  X.  _V ) )
3 df-res 4675 . 2  |-  ( B  |`  C )  =  ( B  i^i  ( C  X.  _V ) )
41, 2, 33eqtr4g 2254 1  |-  ( A  =  B  ->  ( A  |`  C )  =  ( B  |`  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364   _Vcvv 2763    i^i cin 3156    X. cxp 4661    |` cres 4665
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-in 3163  df-res 4675
This theorem is referenced by:  reseq1i  4942  reseq1d  4945  imaeq1  5004  relcoi1  5201  tfr0dm  6380  tfrlemiex  6389  tfr1onlemex  6405  tfr1onlemaccex  6406  tfrcllemsucaccv  6412  tfrcllembxssdm  6414  tfrcllemex  6418  tfrcllemaccex  6419  tfrcllemres  6420  pmresg  6735  lmbr  14449
  Copyright terms: Public domain W3C validator