| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > imaeq2 | Unicode version | ||
| Description: Equality theorem for image. (Contributed by NM, 14-Aug-1994.) |
| Ref | Expression |
|---|---|
| imaeq2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reseq2 4955 |
. . 3
| |
| 2 | 1 | rneqd 4908 |
. 2
|
| 3 | df-ima 4689 |
. 2
| |
| 4 | df-ima 4689 |
. 2
| |
| 5 | 2, 3, 4 | 3eqtr4g 2263 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-sn 3639 df-pr 3640 df-op 3642 df-br 4046 df-opab 4107 df-xp 4682 df-cnv 4684 df-dm 4686 df-rn 4687 df-res 4688 df-ima 4689 |
| This theorem is referenced by: imaeq2i 5021 imaeq2d 5023 fimadmfo 5509 ssimaex 5642 ssimaexg 5643 isoselem 5891 f1opw2 6154 fopwdom 6935 ssenen 6950 fiintim 7030 fidcenumlemrk 7058 fidcenumlemr 7059 sbthlem2 7062 isbth 7071 ennnfonelemp1 12810 ennnfonelemnn0 12826 ctinfomlemom 12831 ctinfom 12832 tgcn 14713 iscnp4 14723 cnpnei 14724 cnima 14725 cnconst2 14738 cnrest2 14741 cnptoprest 14744 txcnp 14776 txcnmpt 14778 metcnp3 15016 |
| Copyright terms: Public domain | W3C validator |