Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > imaeq2 | Unicode version |
Description: Equality theorem for image. (Contributed by NM, 14-Aug-1994.) |
Ref | Expression |
---|---|
imaeq2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reseq2 4879 | . . 3 | |
2 | 1 | rneqd 4833 | . 2 |
3 | df-ima 4617 | . 2 | |
4 | df-ima 4617 | . 2 | |
5 | 2, 3, 4 | 3eqtr4g 2224 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1343 crn 4605 cres 4606 cima 4607 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 df-opab 4044 df-xp 4610 df-cnv 4612 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 |
This theorem is referenced by: imaeq2i 4944 imaeq2d 4946 ssimaex 5547 ssimaexg 5548 isoselem 5788 f1opw2 6044 fopwdom 6802 ssenen 6817 fiintim 6894 fidcenumlemrk 6919 fidcenumlemr 6920 sbthlem2 6923 isbth 6932 ennnfonelemp1 12339 ennnfonelemnn0 12355 ctinfomlemom 12360 ctinfom 12361 tgcn 12848 iscnp4 12858 cnpnei 12859 cnima 12860 cnconst2 12873 cnrest2 12876 cnptoprest 12879 txcnp 12911 txcnmpt 12913 metcnp3 13151 |
Copyright terms: Public domain | W3C validator |