| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > imaeq2 | Unicode version | ||
| Description: Equality theorem for image. (Contributed by NM, 14-Aug-1994.) |
| Ref | Expression |
|---|---|
| imaeq2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reseq2 4973 |
. . 3
| |
| 2 | 1 | rneqd 4926 |
. 2
|
| 3 | df-ima 4706 |
. 2
| |
| 4 | df-ima 4706 |
. 2
| |
| 5 | 2, 3, 4 | 3eqtr4g 2265 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 df-un 3178 df-in 3180 df-ss 3187 df-sn 3649 df-pr 3650 df-op 3652 df-br 4060 df-opab 4122 df-xp 4699 df-cnv 4701 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 |
| This theorem is referenced by: imaeq2i 5039 imaeq2d 5041 fimadmfo 5529 ssimaex 5663 ssimaexg 5664 isoselem 5912 f1opw2 6175 fopwdom 6958 ssenen 6973 fiintim 7054 fidcenumlemrk 7082 fidcenumlemr 7083 sbthlem2 7086 isbth 7095 ennnfonelemp1 12892 ennnfonelemnn0 12908 ctinfomlemom 12913 ctinfom 12914 tgcn 14795 iscnp4 14805 cnpnei 14806 cnima 14807 cnconst2 14820 cnrest2 14823 cnptoprest 14826 txcnp 14858 txcnmpt 14860 metcnp3 15098 |
| Copyright terms: Public domain | W3C validator |