| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > imaeq2 | Unicode version | ||
| Description: Equality theorem for image. (Contributed by NM, 14-Aug-1994.) |
| Ref | Expression |
|---|---|
| imaeq2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reseq2 4942 |
. . 3
| |
| 2 | 1 | rneqd 4896 |
. 2
|
| 3 | df-ima 4677 |
. 2
| |
| 4 | df-ima 4677 |
. 2
| |
| 5 | 2, 3, 4 | 3eqtr4g 2254 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3629 df-pr 3630 df-op 3632 df-br 4035 df-opab 4096 df-xp 4670 df-cnv 4672 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 |
| This theorem is referenced by: imaeq2i 5008 imaeq2d 5010 fimadmfo 5492 ssimaex 5625 ssimaexg 5626 isoselem 5870 f1opw2 6133 fopwdom 6906 ssenen 6921 fiintim 7001 fidcenumlemrk 7029 fidcenumlemr 7030 sbthlem2 7033 isbth 7042 ennnfonelemp1 12648 ennnfonelemnn0 12664 ctinfomlemom 12669 ctinfom 12670 tgcn 14528 iscnp4 14538 cnpnei 14539 cnima 14540 cnconst2 14553 cnrest2 14556 cnptoprest 14559 txcnp 14591 txcnmpt 14593 metcnp3 14831 |
| Copyright terms: Public domain | W3C validator |