| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > imaeq2 | Unicode version | ||
| Description: Equality theorem for image. (Contributed by NM, 14-Aug-1994.) | 
| Ref | Expression | 
|---|---|
| imaeq2 | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | reseq2 4941 | 
. . 3
 | |
| 2 | 1 | rneqd 4895 | 
. 2
 | 
| 3 | df-ima 4676 | 
. 2
 | |
| 4 | df-ima 4676 | 
. 2
 | |
| 5 | 2, 3, 4 | 3eqtr4g 2254 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3628 df-pr 3629 df-op 3631 df-br 4034 df-opab 4095 df-xp 4669 df-cnv 4671 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 | 
| This theorem is referenced by: imaeq2i 5007 imaeq2d 5009 fimadmfo 5489 ssimaex 5622 ssimaexg 5623 isoselem 5867 f1opw2 6129 fopwdom 6897 ssenen 6912 fiintim 6992 fidcenumlemrk 7020 fidcenumlemr 7021 sbthlem2 7024 isbth 7033 ennnfonelemp1 12623 ennnfonelemnn0 12639 ctinfomlemom 12644 ctinfom 12645 tgcn 14444 iscnp4 14454 cnpnei 14455 cnima 14456 cnconst2 14469 cnrest2 14472 cnptoprest 14475 txcnp 14507 txcnmpt 14509 metcnp3 14747 | 
| Copyright terms: Public domain | W3C validator |