| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > imaeq2 | Unicode version | ||
| Description: Equality theorem for image. (Contributed by NM, 14-Aug-1994.) |
| Ref | Expression |
|---|---|
| imaeq2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reseq2 4954 |
. . 3
| |
| 2 | 1 | rneqd 4907 |
. 2
|
| 3 | df-ima 4688 |
. 2
| |
| 4 | df-ima 4688 |
. 2
| |
| 5 | 2, 3, 4 | 3eqtr4g 2263 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-sn 3639 df-pr 3640 df-op 3642 df-br 4045 df-opab 4106 df-xp 4681 df-cnv 4683 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 |
| This theorem is referenced by: imaeq2i 5020 imaeq2d 5022 fimadmfo 5507 ssimaex 5640 ssimaexg 5641 isoselem 5889 f1opw2 6152 fopwdom 6933 ssenen 6948 fiintim 7028 fidcenumlemrk 7056 fidcenumlemr 7057 sbthlem2 7060 isbth 7069 ennnfonelemp1 12777 ennnfonelemnn0 12793 ctinfomlemom 12798 ctinfom 12799 tgcn 14680 iscnp4 14690 cnpnei 14691 cnima 14692 cnconst2 14705 cnrest2 14708 cnptoprest 14711 txcnp 14743 txcnmpt 14745 metcnp3 14983 |
| Copyright terms: Public domain | W3C validator |