ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iscnp Unicode version

Theorem iscnp 12405
Description: The predicate "the class  F is a continuous function from topology  J to topology  K at point  P". Based on Theorem 7.2(g) of [Munkres] p. 107. (Contributed by NM, 17-Oct-2006.) (Revised by Mario Carneiro, 21-Aug-2015.)
Assertion
Ref Expression
iscnp  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  P  e.  X
)  ->  ( F  e.  ( ( J  CnP  K ) `  P )  <-> 
( F : X --> Y  /\  A. y  e.  K  ( ( F `
 P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x )  C_  y ) ) ) ) )
Distinct variable groups:    x, y, J   
x, K, y    x, X, y    x, F, y   
x, P, y    x, Y, y

Proof of Theorem iscnp
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 cnpval 12404 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  P  e.  X
)  ->  ( ( J  CnP  K ) `  P )  =  {
f  e.  ( Y  ^m  X )  | 
A. y  e.  K  ( ( f `  P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( f " x
)  C_  y )
) } )
21eleq2d 2210 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  P  e.  X
)  ->  ( F  e.  ( ( J  CnP  K ) `  P )  <-> 
F  e.  { f  e.  ( Y  ^m  X )  |  A. y  e.  K  (
( f `  P
)  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( f " x
)  C_  y )
) } ) )
3 fveq1 5427 . . . . . . . 8  |-  ( f  =  F  ->  (
f `  P )  =  ( F `  P ) )
43eleq1d 2209 . . . . . . 7  |-  ( f  =  F  ->  (
( f `  P
)  e.  y  <->  ( F `  P )  e.  y ) )
5 imaeq1 4883 . . . . . . . . . 10  |-  ( f  =  F  ->  (
f " x )  =  ( F "
x ) )
65sseq1d 3130 . . . . . . . . 9  |-  ( f  =  F  ->  (
( f " x
)  C_  y  <->  ( F " x )  C_  y
) )
76anbi2d 460 . . . . . . . 8  |-  ( f  =  F  ->  (
( P  e.  x  /\  ( f " x
)  C_  y )  <->  ( P  e.  x  /\  ( F " x ) 
C_  y ) ) )
87rexbidv 2439 . . . . . . 7  |-  ( f  =  F  ->  ( E. x  e.  J  ( P  e.  x  /\  ( f " x
)  C_  y )  <->  E. x  e.  J  ( P  e.  x  /\  ( F " x ) 
C_  y ) ) )
94, 8imbi12d 233 . . . . . 6  |-  ( f  =  F  ->  (
( ( f `  P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( f " x
)  C_  y )
)  <->  ( ( F `
 P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x )  C_  y ) ) ) )
109ralbidv 2438 . . . . 5  |-  ( f  =  F  ->  ( A. y  e.  K  ( ( f `  P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( f " x
)  C_  y )
)  <->  A. y  e.  K  ( ( F `  P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x
)  C_  y )
) ) )
1110elrab 2843 . . . 4  |-  ( F  e.  { f  e.  ( Y  ^m  X
)  |  A. y  e.  K  ( (
f `  P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  (
f " x ) 
C_  y ) ) }  <->  ( F  e.  ( Y  ^m  X
)  /\  A. y  e.  K  ( ( F `  P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x )  C_  y ) ) ) )
12 toponmax 12229 . . . . . 6  |-  ( K  e.  (TopOn `  Y
)  ->  Y  e.  K )
13 toponmax 12229 . . . . . 6  |-  ( J  e.  (TopOn `  X
)  ->  X  e.  J )
14 elmapg 6562 . . . . . 6  |-  ( ( Y  e.  K  /\  X  e.  J )  ->  ( F  e.  ( Y  ^m  X )  <-> 
F : X --> Y ) )
1512, 13, 14syl2anr 288 . . . . 5  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( F  e.  ( Y  ^m  X
)  <->  F : X --> Y ) )
1615anbi1d 461 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( ( F  e.  ( Y  ^m  X )  /\  A. y  e.  K  (
( F `  P
)  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x
)  C_  y )
) )  <->  ( F : X --> Y  /\  A. y  e.  K  (
( F `  P
)  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x
)  C_  y )
) ) ) )
1711, 16syl5bb 191 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( F  e.  { f  e.  ( Y  ^m  X )  |  A. y  e.  K  ( ( f `
 P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  (
f " x ) 
C_  y ) ) }  <->  ( F : X
--> Y  /\  A. y  e.  K  ( ( F `  P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x )  C_  y ) ) ) ) )
18173adant3 1002 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  P  e.  X
)  ->  ( F  e.  { f  e.  ( Y  ^m  X )  |  A. y  e.  K  ( ( f `
 P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  (
f " x ) 
C_  y ) ) }  <->  ( F : X
--> Y  /\  A. y  e.  K  ( ( F `  P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x )  C_  y ) ) ) ) )
192, 18bitrd 187 1  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  P  e.  X
)  ->  ( F  e.  ( ( J  CnP  K ) `  P )  <-> 
( F : X --> Y  /\  A. y  e.  K  ( ( F `
 P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x )  C_  y ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 963    = wceq 1332    e. wcel 1481   A.wral 2417   E.wrex 2418   {crab 2421    C_ wss 3075   "cima 4549   -->wf 5126   ` cfv 5130  (class class class)co 5781    ^m cmap 6549  TopOnctopon 12214    CnP ccnp 12392
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4053  ax-pow 4105  ax-pr 4138  ax-un 4362  ax-setind 4459
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-rab 2426  df-v 2691  df-sbc 2913  df-csb 3007  df-dif 3077  df-un 3079  df-in 3081  df-ss 3088  df-pw 3516  df-sn 3537  df-pr 3538  df-op 3540  df-uni 3744  df-iun 3822  df-br 3937  df-opab 3997  df-mpt 3998  df-id 4222  df-xp 4552  df-rel 4553  df-cnv 4554  df-co 4555  df-dm 4556  df-rn 4557  df-res 4558  df-ima 4559  df-iota 5095  df-fun 5132  df-fn 5133  df-f 5134  df-fv 5138  df-ov 5784  df-oprab 5785  df-mpo 5786  df-1st 6045  df-2nd 6046  df-map 6551  df-top 12202  df-topon 12215  df-cnp 12395
This theorem is referenced by:  iscnp3  12409  cnpf2  12413  tgcnp  12415  icnpimaex  12417  iscnp4  12424  cnpnei  12425  cnptopco  12428  cnconst2  12439  cnptopresti  12444  cnptoprest  12445  cnptoprest2  12446
  Copyright terms: Public domain W3C validator