ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iscnp Unicode version

Theorem iscnp 14873
Description: The predicate "the class  F is a continuous function from topology  J to topology  K at point  P". Based on Theorem 7.2(g) of [Munkres] p. 107. (Contributed by NM, 17-Oct-2006.) (Revised by Mario Carneiro, 21-Aug-2015.)
Assertion
Ref Expression
iscnp  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  P  e.  X
)  ->  ( F  e.  ( ( J  CnP  K ) `  P )  <-> 
( F : X --> Y  /\  A. y  e.  K  ( ( F `
 P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x )  C_  y ) ) ) ) )
Distinct variable groups:    x, y, J   
x, K, y    x, X, y    x, F, y   
x, P, y    x, Y, y

Proof of Theorem iscnp
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 cnpval 14872 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  P  e.  X
)  ->  ( ( J  CnP  K ) `  P )  =  {
f  e.  ( Y  ^m  X )  | 
A. y  e.  K  ( ( f `  P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( f " x
)  C_  y )
) } )
21eleq2d 2299 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  P  e.  X
)  ->  ( F  e.  ( ( J  CnP  K ) `  P )  <-> 
F  e.  { f  e.  ( Y  ^m  X )  |  A. y  e.  K  (
( f `  P
)  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( f " x
)  C_  y )
) } ) )
3 fveq1 5626 . . . . . . . 8  |-  ( f  =  F  ->  (
f `  P )  =  ( F `  P ) )
43eleq1d 2298 . . . . . . 7  |-  ( f  =  F  ->  (
( f `  P
)  e.  y  <->  ( F `  P )  e.  y ) )
5 imaeq1 5063 . . . . . . . . . 10  |-  ( f  =  F  ->  (
f " x )  =  ( F "
x ) )
65sseq1d 3253 . . . . . . . . 9  |-  ( f  =  F  ->  (
( f " x
)  C_  y  <->  ( F " x )  C_  y
) )
76anbi2d 464 . . . . . . . 8  |-  ( f  =  F  ->  (
( P  e.  x  /\  ( f " x
)  C_  y )  <->  ( P  e.  x  /\  ( F " x ) 
C_  y ) ) )
87rexbidv 2531 . . . . . . 7  |-  ( f  =  F  ->  ( E. x  e.  J  ( P  e.  x  /\  ( f " x
)  C_  y )  <->  E. x  e.  J  ( P  e.  x  /\  ( F " x ) 
C_  y ) ) )
94, 8imbi12d 234 . . . . . 6  |-  ( f  =  F  ->  (
( ( f `  P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( f " x
)  C_  y )
)  <->  ( ( F `
 P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x )  C_  y ) ) ) )
109ralbidv 2530 . . . . 5  |-  ( f  =  F  ->  ( A. y  e.  K  ( ( f `  P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( f " x
)  C_  y )
)  <->  A. y  e.  K  ( ( F `  P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x
)  C_  y )
) ) )
1110elrab 2959 . . . 4  |-  ( F  e.  { f  e.  ( Y  ^m  X
)  |  A. y  e.  K  ( (
f `  P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  (
f " x ) 
C_  y ) ) }  <->  ( F  e.  ( Y  ^m  X
)  /\  A. y  e.  K  ( ( F `  P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x )  C_  y ) ) ) )
12 toponmax 14699 . . . . . 6  |-  ( K  e.  (TopOn `  Y
)  ->  Y  e.  K )
13 toponmax 14699 . . . . . 6  |-  ( J  e.  (TopOn `  X
)  ->  X  e.  J )
14 elmapg 6808 . . . . . 6  |-  ( ( Y  e.  K  /\  X  e.  J )  ->  ( F  e.  ( Y  ^m  X )  <-> 
F : X --> Y ) )
1512, 13, 14syl2anr 290 . . . . 5  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( F  e.  ( Y  ^m  X
)  <->  F : X --> Y ) )
1615anbi1d 465 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( ( F  e.  ( Y  ^m  X )  /\  A. y  e.  K  (
( F `  P
)  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x
)  C_  y )
) )  <->  ( F : X --> Y  /\  A. y  e.  K  (
( F `  P
)  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x
)  C_  y )
) ) ) )
1711, 16bitrid 192 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( F  e.  { f  e.  ( Y  ^m  X )  |  A. y  e.  K  ( ( f `
 P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  (
f " x ) 
C_  y ) ) }  <->  ( F : X
--> Y  /\  A. y  e.  K  ( ( F `  P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x )  C_  y ) ) ) ) )
18173adant3 1041 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  P  e.  X
)  ->  ( F  e.  { f  e.  ( Y  ^m  X )  |  A. y  e.  K  ( ( f `
 P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  (
f " x ) 
C_  y ) ) }  <->  ( F : X
--> Y  /\  A. y  e.  K  ( ( F `  P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x )  C_  y ) ) ) ) )
192, 18bitrd 188 1  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  P  e.  X
)  ->  ( F  e.  ( ( J  CnP  K ) `  P )  <-> 
( F : X --> Y  /\  A. y  e.  K  ( ( F `
 P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x )  C_  y ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 1002    = wceq 1395    e. wcel 2200   A.wral 2508   E.wrex 2509   {crab 2512    C_ wss 3197   "cima 4722   -->wf 5314   ` cfv 5318  (class class class)co 6001    ^m cmap 6795  TopOnctopon 14684    CnP ccnp 14860
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-fv 5326  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-map 6797  df-top 14672  df-topon 14685  df-cnp 14863
This theorem is referenced by:  iscnp3  14877  cnpf2  14881  tgcnp  14883  icnpimaex  14885  iscnp4  14892  cnpnei  14893  cnptopco  14896  cnconst2  14907  cnptopresti  14912  cnptoprest  14913  cnptoprest2  14914
  Copyright terms: Public domain W3C validator