ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imaeq1i Unicode version

Theorem imaeq1i 4836
Description: Equality theorem for image. (Contributed by NM, 21-Dec-2008.)
Hypothesis
Ref Expression
imaeq1i.1  |-  A  =  B
Assertion
Ref Expression
imaeq1i  |-  ( A
" C )  =  ( B " C
)

Proof of Theorem imaeq1i
StepHypRef Expression
1 imaeq1i.1 . 2  |-  A  =  B
2 imaeq1 4834 . 2  |-  ( A  =  B  ->  ( A " C )  =  ( B " C
) )
31, 2ax-mp 7 1  |-  ( A
" C )  =  ( B " C
)
Colors of variables: wff set class
Syntax hints:    = wceq 1314   "cima 4502
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097
This theorem depends on definitions:  df-bi 116  df-3an 947  df-tru 1317  df-nf 1420  df-sb 1719  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-v 2659  df-un 3041  df-in 3043  df-ss 3050  df-sn 3499  df-pr 3500  df-op 3502  df-br 3896  df-opab 3950  df-cnv 4507  df-dm 4509  df-rn 4510  df-res 4511  df-ima 4512
This theorem is referenced by:  mptpreima  4990  isarep2  5168  infrenegsupex  9291  infxrnegsupex  10924  ssidcn  12221  cnco  12232
  Copyright terms: Public domain W3C validator