ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imaeq1i Unicode version

Theorem imaeq1i 5006
Description: Equality theorem for image. (Contributed by NM, 21-Dec-2008.)
Hypothesis
Ref Expression
imaeq1i.1  |-  A  =  B
Assertion
Ref Expression
imaeq1i  |-  ( A
" C )  =  ( B " C
)

Proof of Theorem imaeq1i
StepHypRef Expression
1 imaeq1i.1 . 2  |-  A  =  B
2 imaeq1 5004 . 2  |-  ( A  =  B  ->  ( A " C )  =  ( B " C
) )
31, 2ax-mp 5 1  |-  ( A
" C )  =  ( B " C
)
Colors of variables: wff set class
Syntax hints:    = wceq 1364   "cima 4666
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-sn 3628  df-pr 3629  df-op 3631  df-br 4034  df-opab 4095  df-cnv 4671  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676
This theorem is referenced by:  mptpreima  5163  isarep2  5345  infrenegsupex  9668  infxrnegsupex  11428  ssidcn  14446  cnco  14457
  Copyright terms: Public domain W3C validator