ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imaeq12d Unicode version

Theorem imaeq12d 5023
Description: Equality theorem for image. (Contributed by Mario Carneiro, 4-Dec-2016.)
Hypotheses
Ref Expression
imaeq1d.1  |-  ( ph  ->  A  =  B )
imaeq12d.2  |-  ( ph  ->  C  =  D )
Assertion
Ref Expression
imaeq12d  |-  ( ph  ->  ( A " C
)  =  ( B
" D ) )

Proof of Theorem imaeq12d
StepHypRef Expression
1 imaeq1d.1 . . 3  |-  ( ph  ->  A  =  B )
21imaeq1d 5021 . 2  |-  ( ph  ->  ( A " C
)  =  ( B
" C ) )
3 imaeq12d.2 . . 3  |-  ( ph  ->  C  =  D )
43imaeq2d 5022 . 2  |-  ( ph  ->  ( B " C
)  =  ( B
" D ) )
52, 4eqtrd 2238 1  |-  ( ph  ->  ( A " C
)  =  ( B
" D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373   "cima 4678
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-sn 3639  df-pr 3640  df-op 3642  df-br 4045  df-opab 4106  df-xp 4681  df-cnv 4683  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688
This theorem is referenced by:  csbima12g  5043  caseinl  7193  caseinr  7194  isunitd  13868
  Copyright terms: Public domain W3C validator