ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imaeq12d Unicode version

Theorem imaeq12d 5042
Description: Equality theorem for image. (Contributed by Mario Carneiro, 4-Dec-2016.)
Hypotheses
Ref Expression
imaeq1d.1  |-  ( ph  ->  A  =  B )
imaeq12d.2  |-  ( ph  ->  C  =  D )
Assertion
Ref Expression
imaeq12d  |-  ( ph  ->  ( A " C
)  =  ( B
" D ) )

Proof of Theorem imaeq12d
StepHypRef Expression
1 imaeq1d.1 . . 3  |-  ( ph  ->  A  =  B )
21imaeq1d 5040 . 2  |-  ( ph  ->  ( A " C
)  =  ( B
" C ) )
3 imaeq12d.2 . . 3  |-  ( ph  ->  C  =  D )
43imaeq2d 5041 . 2  |-  ( ph  ->  ( B " C
)  =  ( B
" D ) )
52, 4eqtrd 2240 1  |-  ( ph  ->  ( A " C
)  =  ( B
" D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373   "cima 4696
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-sn 3649  df-pr 3650  df-op 3652  df-br 4060  df-opab 4122  df-xp 4699  df-cnv 4701  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706
This theorem is referenced by:  csbima12g  5062  caseinl  7219  caseinr  7220  isunitd  13983
  Copyright terms: Public domain W3C validator