ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imaeq12d Unicode version

Theorem imaeq12d 4818
Description: Equality theorem for image. (Contributed by Mario Carneiro, 4-Dec-2016.)
Hypotheses
Ref Expression
imaeq1d.1  |-  ( ph  ->  A  =  B )
imaeq12d.2  |-  ( ph  ->  C  =  D )
Assertion
Ref Expression
imaeq12d  |-  ( ph  ->  ( A " C
)  =  ( B
" D ) )

Proof of Theorem imaeq12d
StepHypRef Expression
1 imaeq1d.1 . . 3  |-  ( ph  ->  A  =  B )
21imaeq1d 4816 . 2  |-  ( ph  ->  ( A " C
)  =  ( B
" C ) )
3 imaeq12d.2 . . 3  |-  ( ph  ->  C  =  D )
43imaeq2d 4817 . 2  |-  ( ph  ->  ( B " C
)  =  ( B
" D ) )
52, 4eqtrd 2132 1  |-  ( ph  ->  ( A " C
)  =  ( B
" D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1299   "cima 4480
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082
This theorem depends on definitions:  df-bi 116  df-3an 932  df-tru 1302  df-nf 1405  df-sb 1704  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-v 2643  df-un 3025  df-in 3027  df-ss 3034  df-sn 3480  df-pr 3481  df-op 3483  df-br 3876  df-opab 3930  df-xp 4483  df-cnv 4485  df-dm 4487  df-rn 4488  df-res 4489  df-ima 4490
This theorem is referenced by:  csbima12g  4836  caseinl  6891  caseinr  6892
  Copyright terms: Public domain W3C validator