ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imaeq12d GIF version

Theorem imaeq12d 4788
Description: Equality theorem for image. (Contributed by Mario Carneiro, 4-Dec-2016.)
Hypotheses
Ref Expression
imaeq1d.1 (𝜑𝐴 = 𝐵)
imaeq12d.2 (𝜑𝐶 = 𝐷)
Assertion
Ref Expression
imaeq12d (𝜑 → (𝐴𝐶) = (𝐵𝐷))

Proof of Theorem imaeq12d
StepHypRef Expression
1 imaeq1d.1 . . 3 (𝜑𝐴 = 𝐵)
21imaeq1d 4786 . 2 (𝜑 → (𝐴𝐶) = (𝐵𝐶))
3 imaeq12d.2 . . 3 (𝜑𝐶 = 𝐷)
43imaeq2d 4787 . 2 (𝜑 → (𝐵𝐶) = (𝐵𝐷))
52, 4eqtrd 2121 1 (𝜑 → (𝐴𝐶) = (𝐵𝐷))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1290  cima 4455
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071
This theorem depends on definitions:  df-bi 116  df-3an 927  df-tru 1293  df-nf 1396  df-sb 1694  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-v 2622  df-un 3004  df-in 3006  df-ss 3013  df-sn 3456  df-pr 3457  df-op 3459  df-br 3852  df-opab 3906  df-xp 4458  df-cnv 4460  df-dm 4462  df-rn 4463  df-res 4464  df-ima 4465
This theorem is referenced by:  csbima12g  4806  caseinl  6836
  Copyright terms: Public domain W3C validator