Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > imaeq12d | GIF version |
Description: Equality theorem for image. (Contributed by Mario Carneiro, 4-Dec-2016.) |
Ref | Expression |
---|---|
imaeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
imaeq12d.2 | ⊢ (𝜑 → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
imaeq12d | ⊢ (𝜑 → (𝐴 “ 𝐶) = (𝐵 “ 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imaeq1d.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | 1 | imaeq1d 4962 | . 2 ⊢ (𝜑 → (𝐴 “ 𝐶) = (𝐵 “ 𝐶)) |
3 | imaeq12d.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐷) | |
4 | 3 | imaeq2d 4963 | . 2 ⊢ (𝜑 → (𝐵 “ 𝐶) = (𝐵 “ 𝐷)) |
5 | 2, 4 | eqtrd 2208 | 1 ⊢ (𝜑 → (𝐴 “ 𝐶) = (𝐵 “ 𝐷)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1353 “ cima 4623 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-v 2737 df-un 3131 df-in 3133 df-ss 3140 df-sn 3595 df-pr 3596 df-op 3598 df-br 3999 df-opab 4060 df-xp 4626 df-cnv 4628 df-dm 4630 df-rn 4631 df-res 4632 df-ima 4633 |
This theorem is referenced by: csbima12g 4982 caseinl 7080 caseinr 7081 |
Copyright terms: Public domain | W3C validator |