![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > imaeq12d | GIF version |
Description: Equality theorem for image. (Contributed by Mario Carneiro, 4-Dec-2016.) |
Ref | Expression |
---|---|
imaeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
imaeq12d.2 | ⊢ (𝜑 → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
imaeq12d | ⊢ (𝜑 → (𝐴 “ 𝐶) = (𝐵 “ 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imaeq1d.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | 1 | imaeq1d 5005 | . 2 ⊢ (𝜑 → (𝐴 “ 𝐶) = (𝐵 “ 𝐶)) |
3 | imaeq12d.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐷) | |
4 | 3 | imaeq2d 5006 | . 2 ⊢ (𝜑 → (𝐵 “ 𝐶) = (𝐵 “ 𝐷)) |
5 | 2, 4 | eqtrd 2226 | 1 ⊢ (𝜑 → (𝐴 “ 𝐶) = (𝐵 “ 𝐷)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 “ cima 4663 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-un 3158 df-in 3160 df-ss 3167 df-sn 3625 df-pr 3626 df-op 3628 df-br 4031 df-opab 4092 df-xp 4666 df-cnv 4668 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 |
This theorem is referenced by: csbima12g 5027 caseinl 7152 caseinr 7153 isunitd 13605 |
Copyright terms: Public domain | W3C validator |