ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbima12g Unicode version

Theorem csbima12g 5088
Description: Move class substitution in and out of the image of a function. (Contributed by FL, 15-Dec-2006.) (Proof shortened by Mario Carneiro, 4-Dec-2016.)
Assertion
Ref Expression
csbima12g  |-  ( A  e.  C  ->  [_ A  /  x ]_ ( F
" B )  =  ( [_ A  /  x ]_ F " [_ A  /  x ]_ B ) )

Proof of Theorem csbima12g
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 csbeq1 3127 . . 3  |-  ( y  =  A  ->  [_ y  /  x ]_ ( F
" B )  = 
[_ A  /  x ]_ ( F " B
) )
2 csbeq1 3127 . . . 4  |-  ( y  =  A  ->  [_ y  /  x ]_ F  = 
[_ A  /  x ]_ F )
3 csbeq1 3127 . . . 4  |-  ( y  =  A  ->  [_ y  /  x ]_ B  = 
[_ A  /  x ]_ B )
42, 3imaeq12d 5068 . . 3  |-  ( y  =  A  ->  ( [_ y  /  x ]_ F " [_ y  /  x ]_ B )  =  ( [_ A  /  x ]_ F " [_ A  /  x ]_ B ) )
51, 4eqeq12d 2244 . 2  |-  ( y  =  A  ->  ( [_ y  /  x ]_ ( F " B
)  =  ( [_ y  /  x ]_ F "
[_ y  /  x ]_ B )  <->  [_ A  /  x ]_ ( F " B )  =  (
[_ A  /  x ]_ F " [_ A  /  x ]_ B ) ) )
6 vex 2802 . . 3  |-  y  e. 
_V
7 nfcsb1v 3157 . . . 4  |-  F/_ x [_ y  /  x ]_ F
8 nfcsb1v 3157 . . . 4  |-  F/_ x [_ y  /  x ]_ B
97, 8nfima 5075 . . 3  |-  F/_ x
( [_ y  /  x ]_ F " [_ y  /  x ]_ B )
10 csbeq1a 3133 . . . 4  |-  ( x  =  y  ->  F  =  [_ y  /  x ]_ F )
11 csbeq1a 3133 . . . 4  |-  ( x  =  y  ->  B  =  [_ y  /  x ]_ B )
1210, 11imaeq12d 5068 . . 3  |-  ( x  =  y  ->  ( F " B )  =  ( [_ y  /  x ]_ F " [_ y  /  x ]_ B ) )
136, 9, 12csbief 3169 . 2  |-  [_ y  /  x ]_ ( F
" B )  =  ( [_ y  /  x ]_ F " [_ y  /  x ]_ B )
145, 13vtoclg 2861 1  |-  ( A  e.  C  ->  [_ A  /  x ]_ ( F
" B )  =  ( [_ A  /  x ]_ F " [_ A  /  x ]_ B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1395    e. wcel 2200   [_csb 3124   "cima 4721
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-un 3201  df-in 3203  df-ss 3210  df-sn 3672  df-pr 3673  df-op 3675  df-br 4083  df-opab 4145  df-xp 4724  df-cnv 4726  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator