| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > imaeq2d | Unicode version | ||
| Description: Equality theorem for image. (Contributed by FL, 15-Dec-2006.) |
| Ref | Expression |
|---|---|
| imaeq1d.1 |
|
| Ref | Expression |
|---|---|
| imaeq2d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imaeq1d.1 |
. 2
| |
| 2 | imaeq2 5019 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-sn 3639 df-pr 3640 df-op 3642 df-br 4046 df-opab 4107 df-xp 4682 df-cnv 4684 df-dm 4686 df-rn 4687 df-res 4688 df-ima 4689 |
| This theorem is referenced by: imaeq12d 5024 nfimad 5032 elimasng 5051 ressn 5224 foima 5505 f1imacnv 5541 fvco2 5650 fsn2 5756 resfunexg 5807 funfvima3 5820 funiunfvdm 5834 isoselem 5891 fnexALT 6198 eceq1 6657 uniqs2 6684 ecinxp 6699 mapsn 6779 en2 6914 phplem4 6954 phplem4dom 6961 phplem4on 6966 sbthlem2 7062 isbth 7071 resunimafz0 10978 ennnfonelemg 12807 ennnfonelemhf1o 12817 ennnfonelemex 12818 ennnfonelemrn 12823 cnntr 14730 cnptopresti 14743 cnptoprest 14744 |
| Copyright terms: Public domain | W3C validator |