| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > imaeq2d | Unicode version | ||
| Description: Equality theorem for image. (Contributed by FL, 15-Dec-2006.) |
| Ref | Expression |
|---|---|
| imaeq1d.1 |
|
| Ref | Expression |
|---|---|
| imaeq2d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imaeq1d.1 |
. 2
| |
| 2 | imaeq2 5018 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-sn 3639 df-pr 3640 df-op 3642 df-br 4045 df-opab 4106 df-xp 4681 df-cnv 4683 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 |
| This theorem is referenced by: imaeq12d 5023 nfimad 5031 elimasng 5050 ressn 5223 foima 5503 f1imacnv 5539 fvco2 5648 fsn2 5754 resfunexg 5805 funfvima3 5818 funiunfvdm 5832 isoselem 5889 fnexALT 6196 eceq1 6655 uniqs2 6682 ecinxp 6697 mapsn 6777 en2 6912 phplem4 6952 phplem4dom 6959 phplem4on 6964 sbthlem2 7060 isbth 7069 resunimafz0 10976 ennnfonelemg 12774 ennnfonelemhf1o 12784 ennnfonelemex 12785 ennnfonelemrn 12790 cnntr 14697 cnptopresti 14710 cnptoprest 14711 |
| Copyright terms: Public domain | W3C validator |