| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > imaeq2d | Unicode version | ||
| Description: Equality theorem for image. (Contributed by FL, 15-Dec-2006.) | 
| Ref | Expression | 
|---|---|
| imaeq1d.1 | 
 | 
| Ref | Expression | 
|---|---|
| imaeq2d | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | imaeq1d.1 | 
. 2
 | |
| 2 | imaeq2 5005 | 
. 2
 | |
| 3 | 1, 2 | syl 14 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3628 df-pr 3629 df-op 3631 df-br 4034 df-opab 4095 df-xp 4669 df-cnv 4671 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 | 
| This theorem is referenced by: imaeq12d 5010 nfimad 5018 elimasng 5037 ressn 5210 foima 5485 f1imacnv 5521 fvco2 5630 fsn2 5736 resfunexg 5783 funfvima3 5796 funiunfvdm 5810 isoselem 5867 fnexALT 6168 eceq1 6627 uniqs2 6654 ecinxp 6669 mapsn 6749 phplem4 6916 phplem4dom 6923 phplem4on 6928 sbthlem2 7024 isbth 7033 resunimafz0 10923 ennnfonelemg 12620 ennnfonelemhf1o 12630 ennnfonelemex 12631 ennnfonelemrn 12636 cnntr 14461 cnptopresti 14474 cnptoprest 14475 | 
| Copyright terms: Public domain | W3C validator |