![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > imaeq2d | Unicode version |
Description: Equality theorem for image. (Contributed by FL, 15-Dec-2006.) |
Ref | Expression |
---|---|
imaeq1d.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
imaeq2d |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imaeq1d.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | imaeq2 5002 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | syl 14 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-un 3158 df-in 3160 df-ss 3167 df-sn 3625 df-pr 3626 df-op 3628 df-br 4031 df-opab 4092 df-xp 4666 df-cnv 4668 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 |
This theorem is referenced by: imaeq12d 5007 nfimad 5015 elimasng 5034 ressn 5207 foima 5482 f1imacnv 5518 fvco2 5627 fsn2 5733 resfunexg 5780 funfvima3 5793 funiunfvdm 5807 isoselem 5864 fnexALT 6165 eceq1 6624 uniqs2 6651 ecinxp 6666 mapsn 6746 phplem4 6913 phplem4dom 6920 phplem4on 6925 sbthlem2 7019 isbth 7028 resunimafz0 10905 ennnfonelemg 12563 ennnfonelemhf1o 12573 ennnfonelemex 12574 ennnfonelemrn 12579 cnntr 14404 cnptopresti 14417 cnptoprest 14418 |
Copyright terms: Public domain | W3C validator |