Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > imaeq2d | Unicode version |
Description: Equality theorem for image. (Contributed by FL, 15-Dec-2006.) |
Ref | Expression |
---|---|
imaeq1d.1 |
Ref | Expression |
---|---|
imaeq2d |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imaeq1d.1 | . 2 | |
2 | imaeq2 4949 | . 2 | |
3 | 1, 2 | syl 14 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1348 cima 4614 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-sn 3589 df-pr 3590 df-op 3592 df-br 3990 df-opab 4051 df-xp 4617 df-cnv 4619 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 |
This theorem is referenced by: imaeq12d 4954 nfimad 4962 elimasng 4979 ressn 5151 foima 5425 f1imacnv 5459 fvco2 5565 fsn2 5670 resfunexg 5717 funfvima3 5729 funiunfvdm 5742 isoselem 5799 fnexALT 6090 eceq1 6548 uniqs2 6573 ecinxp 6588 mapsn 6668 phplem4 6833 phplem4dom 6840 phplem4on 6845 sbthlem2 6935 isbth 6944 resunimafz0 10766 ennnfonelemg 12358 ennnfonelemhf1o 12368 ennnfonelemex 12369 ennnfonelemrn 12374 cnntr 13019 cnptopresti 13032 cnptoprest 13033 |
Copyright terms: Public domain | W3C validator |