ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imaeq2d Unicode version

Theorem imaeq2d 4761
Description: Equality theorem for image. (Contributed by FL, 15-Dec-2006.)
Hypothesis
Ref Expression
imaeq1d.1  |-  ( ph  ->  A  =  B )
Assertion
Ref Expression
imaeq2d  |-  ( ph  ->  ( C " A
)  =  ( C
" B ) )

Proof of Theorem imaeq2d
StepHypRef Expression
1 imaeq1d.1 . 2  |-  ( ph  ->  A  =  B )
2 imaeq2 4757 . 2  |-  ( A  =  B  ->  ( C " A )  =  ( C " B
) )
31, 2syl 14 1  |-  ( ph  ->  ( C " A
)  =  ( C
" B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1289   "cima 4431
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-nf 1395  df-sb 1693  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-v 2621  df-un 3001  df-in 3003  df-ss 3010  df-sn 3447  df-pr 3448  df-op 3450  df-br 3838  df-opab 3892  df-xp 4434  df-cnv 4436  df-dm 4438  df-rn 4439  df-res 4440  df-ima 4441
This theorem is referenced by:  imaeq12d  4762  nfimad  4770  elimasng  4787  ressn  4958  foima  5222  f1imacnv  5254  fvco2  5357  fsn2  5455  resfunexg  5500  funfvima3  5510  funiunfvdm  5524  isoselem  5581  fnexALT  5866  eceq1  6307  uniqs2  6332  ecinxp  6347  mapsn  6427  phplem4  6551  phplem4dom  6558  phplem4on  6563  sbthlem2  6646  isbth  6655  resunimafz0  10201
  Copyright terms: Public domain W3C validator