![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > imaeq2d | Unicode version |
Description: Equality theorem for image. (Contributed by FL, 15-Dec-2006.) |
Ref | Expression |
---|---|
imaeq1d.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
imaeq2d |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imaeq1d.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | imaeq2 5001 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | syl 14 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-un 3157 df-in 3159 df-ss 3166 df-sn 3624 df-pr 3625 df-op 3627 df-br 4030 df-opab 4091 df-xp 4665 df-cnv 4667 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 |
This theorem is referenced by: imaeq12d 5006 nfimad 5014 elimasng 5033 ressn 5206 foima 5481 f1imacnv 5517 fvco2 5626 fsn2 5732 resfunexg 5779 funfvima3 5792 funiunfvdm 5806 isoselem 5863 fnexALT 6163 eceq1 6622 uniqs2 6649 ecinxp 6664 mapsn 6744 phplem4 6911 phplem4dom 6918 phplem4on 6923 sbthlem2 7017 isbth 7026 resunimafz0 10902 ennnfonelemg 12560 ennnfonelemhf1o 12570 ennnfonelemex 12571 ennnfonelemrn 12576 cnntr 14393 cnptopresti 14406 cnptoprest 14407 |
Copyright terms: Public domain | W3C validator |