| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > imaeq2d | Unicode version | ||
| Description: Equality theorem for image. (Contributed by FL, 15-Dec-2006.) |
| Ref | Expression |
|---|---|
| imaeq1d.1 |
|
| Ref | Expression |
|---|---|
| imaeq2d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imaeq1d.1 |
. 2
| |
| 2 | imaeq2 5064 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-sn 3672 df-pr 3673 df-op 3675 df-br 4084 df-opab 4146 df-xp 4725 df-cnv 4727 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 |
| This theorem is referenced by: imaeq12d 5069 nfimad 5077 elimasng 5096 ressn 5269 foima 5553 f1imacnv 5589 fvco2 5703 fsn2 5809 resfunexg 5860 funfvima3 5873 funiunfvdm 5887 isoselem 5944 fnexALT 6256 eceq1 6715 uniqs2 6742 ecinxp 6757 mapsn 6837 en2 6973 phplem4 7016 phplem4dom 7023 phplem4on 7029 sbthlem2 7125 isbth 7134 resunimafz0 11053 ennnfonelemg 12974 ennnfonelemhf1o 12984 ennnfonelemex 12985 ennnfonelemrn 12990 cnntr 14899 cnptopresti 14912 cnptoprest 14913 |
| Copyright terms: Public domain | W3C validator |