| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > imaeq2d | Unicode version | ||
| Description: Equality theorem for image. (Contributed by FL, 15-Dec-2006.) |
| Ref | Expression |
|---|---|
| imaeq1d.1 |
|
| Ref | Expression |
|---|---|
| imaeq2d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imaeq1d.1 |
. 2
| |
| 2 | imaeq2 5037 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 df-un 3178 df-in 3180 df-ss 3187 df-sn 3649 df-pr 3650 df-op 3652 df-br 4060 df-opab 4122 df-xp 4699 df-cnv 4701 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 |
| This theorem is referenced by: imaeq12d 5042 nfimad 5050 elimasng 5069 ressn 5242 foima 5525 f1imacnv 5561 fvco2 5671 fsn2 5777 resfunexg 5828 funfvima3 5841 funiunfvdm 5855 isoselem 5912 fnexALT 6219 eceq1 6678 uniqs2 6705 ecinxp 6720 mapsn 6800 en2 6936 phplem4 6977 phplem4dom 6984 phplem4on 6990 sbthlem2 7086 isbth 7095 resunimafz0 11013 ennnfonelemg 12889 ennnfonelemhf1o 12899 ennnfonelemex 12900 ennnfonelemrn 12905 cnntr 14812 cnptopresti 14825 cnptoprest 14826 |
| Copyright terms: Public domain | W3C validator |