| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > imaeq2d | Unicode version | ||
| Description: Equality theorem for image. (Contributed by FL, 15-Dec-2006.) |
| Ref | Expression |
|---|---|
| imaeq1d.1 |
|
| Ref | Expression |
|---|---|
| imaeq2d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imaeq1d.1 |
. 2
| |
| 2 | imaeq2 5006 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3629 df-pr 3630 df-op 3632 df-br 4035 df-opab 4096 df-xp 4670 df-cnv 4672 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 |
| This theorem is referenced by: imaeq12d 5011 nfimad 5019 elimasng 5038 ressn 5211 foima 5486 f1imacnv 5522 fvco2 5631 fsn2 5737 resfunexg 5784 funfvima3 5797 funiunfvdm 5811 isoselem 5868 fnexALT 6169 eceq1 6628 uniqs2 6655 ecinxp 6670 mapsn 6750 phplem4 6917 phplem4dom 6924 phplem4on 6929 sbthlem2 7025 isbth 7034 resunimafz0 10925 ennnfonelemg 12630 ennnfonelemhf1o 12640 ennnfonelemex 12641 ennnfonelemrn 12646 cnntr 14471 cnptopresti 14484 cnptoprest 14485 |
| Copyright terms: Public domain | W3C validator |