![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > imaeq2d | Unicode version |
Description: Equality theorem for image. (Contributed by FL, 15-Dec-2006.) |
Ref | Expression |
---|---|
imaeq1d.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
imaeq2d |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imaeq1d.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | imaeq2 4833 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | syl 14 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 681 ax-5 1404 ax-7 1405 ax-gen 1406 ax-ie1 1450 ax-ie2 1451 ax-8 1463 ax-10 1464 ax-11 1465 ax-i12 1466 ax-bndl 1467 ax-4 1468 ax-17 1487 ax-i9 1491 ax-ial 1495 ax-i5r 1496 ax-ext 2095 |
This theorem depends on definitions: df-bi 116 df-3an 945 df-tru 1315 df-nf 1418 df-sb 1717 df-clab 2100 df-cleq 2106 df-clel 2109 df-nfc 2242 df-v 2657 df-un 3039 df-in 3041 df-ss 3048 df-sn 3497 df-pr 3498 df-op 3500 df-br 3894 df-opab 3948 df-xp 4503 df-cnv 4505 df-dm 4507 df-rn 4508 df-res 4509 df-ima 4510 |
This theorem is referenced by: imaeq12d 4838 nfimad 4846 elimasng 4863 ressn 5035 foima 5306 f1imacnv 5338 fvco2 5442 fsn2 5546 resfunexg 5593 funfvima3 5603 funiunfvdm 5616 isoselem 5673 fnexALT 5962 eceq1 6415 uniqs2 6440 ecinxp 6455 mapsn 6535 phplem4 6699 phplem4dom 6706 phplem4on 6711 sbthlem2 6795 isbth 6804 resunimafz0 10460 ennnfonelemg 11754 ennnfonelemhf1o 11764 ennnfonelemex 11765 ennnfonelemrn 11770 cnntr 12229 cnptopresti 12242 cnptoprest 12243 |
Copyright terms: Public domain | W3C validator |