Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > imaeq2d | Unicode version |
Description: Equality theorem for image. (Contributed by FL, 15-Dec-2006.) |
Ref | Expression |
---|---|
imaeq1d.1 |
Ref | Expression |
---|---|
imaeq2d |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imaeq1d.1 | . 2 | |
2 | imaeq2 4942 | . 2 | |
3 | 1, 2 | syl 14 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1343 cima 4607 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 df-opab 4044 df-xp 4610 df-cnv 4612 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 |
This theorem is referenced by: imaeq12d 4947 nfimad 4955 elimasng 4972 ressn 5144 foima 5415 f1imacnv 5449 fvco2 5555 fsn2 5659 resfunexg 5706 funfvima3 5718 funiunfvdm 5731 isoselem 5788 fnexALT 6079 eceq1 6536 uniqs2 6561 ecinxp 6576 mapsn 6656 phplem4 6821 phplem4dom 6828 phplem4on 6833 sbthlem2 6923 isbth 6932 resunimafz0 10744 ennnfonelemg 12336 ennnfonelemhf1o 12346 ennnfonelemex 12347 ennnfonelemrn 12352 cnntr 12875 cnptopresti 12888 cnptoprest 12889 |
Copyright terms: Public domain | W3C validator |