ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfima2 Unicode version

Theorem dfima2 5011
Description: Alternate definition of image. Compare definition (d) of [Enderton] p. 44. (Contributed by NM, 19-Apr-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
dfima2  |-  ( A
" B )  =  { y  |  E. x  e.  B  x A y }
Distinct variable groups:    x, y, A   
x, B, y

Proof of Theorem dfima2
StepHypRef Expression
1 df-ima 4676 . 2  |-  ( A
" B )  =  ran  ( A  |`  B )
2 dfrn2 4854 . 2  |-  ran  ( A  |`  B )  =  { y  |  E. x  x ( A  |`  B ) y }
3 vex 2766 . . . . . . 7  |-  y  e. 
_V
43brres 4952 . . . . . 6  |-  ( x ( A  |`  B ) y  <->  ( x A y  /\  x  e.  B ) )
5 ancom 266 . . . . . 6  |-  ( ( x A y  /\  x  e.  B )  <->  ( x  e.  B  /\  x A y ) )
64, 5bitri 184 . . . . 5  |-  ( x ( A  |`  B ) y  <->  ( x  e.  B  /\  x A y ) )
76exbii 1619 . . . 4  |-  ( E. x  x ( A  |`  B ) y  <->  E. x
( x  e.  B  /\  x A y ) )
8 df-rex 2481 . . . 4  |-  ( E. x  e.  B  x A y  <->  E. x
( x  e.  B  /\  x A y ) )
97, 8bitr4i 187 . . 3  |-  ( E. x  x ( A  |`  B ) y  <->  E. x  e.  B  x A
y )
109abbii 2312 . 2  |-  { y  |  E. x  x ( A  |`  B ) y }  =  {
y  |  E. x  e.  B  x A
y }
111, 2, 103eqtri 2221 1  |-  ( A
" B )  =  { y  |  E. x  e.  B  x A y }
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1364   E.wex 1506    e. wcel 2167   {cab 2182   E.wrex 2476   class class class wbr 4033   ran crn 4664    |` cres 4665   "cima 4666
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-br 4034  df-opab 4095  df-xp 4669  df-cnv 4671  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676
This theorem is referenced by:  dfima3  5012  elimag  5013  imasng  5034  imadiflem  5337  imadif  5338  imainlem  5339  imain  5340  funimaexglem  5341  dfimafn  5609  isoini  5865
  Copyright terms: Public domain W3C validator