ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfima2 Unicode version

Theorem dfima2 5043
Description: Alternate definition of image. Compare definition (d) of [Enderton] p. 44. (Contributed by NM, 19-Apr-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
dfima2  |-  ( A
" B )  =  { y  |  E. x  e.  B  x A y }
Distinct variable groups:    x, y, A   
x, B, y

Proof of Theorem dfima2
StepHypRef Expression
1 df-ima 4706 . 2  |-  ( A
" B )  =  ran  ( A  |`  B )
2 dfrn2 4884 . 2  |-  ran  ( A  |`  B )  =  { y  |  E. x  x ( A  |`  B ) y }
3 vex 2779 . . . . . . 7  |-  y  e. 
_V
43brres 4984 . . . . . 6  |-  ( x ( A  |`  B ) y  <->  ( x A y  /\  x  e.  B ) )
5 ancom 266 . . . . . 6  |-  ( ( x A y  /\  x  e.  B )  <->  ( x  e.  B  /\  x A y ) )
64, 5bitri 184 . . . . 5  |-  ( x ( A  |`  B ) y  <->  ( x  e.  B  /\  x A y ) )
76exbii 1629 . . . 4  |-  ( E. x  x ( A  |`  B ) y  <->  E. x
( x  e.  B  /\  x A y ) )
8 df-rex 2492 . . . 4  |-  ( E. x  e.  B  x A y  <->  E. x
( x  e.  B  /\  x A y ) )
97, 8bitr4i 187 . . 3  |-  ( E. x  x ( A  |`  B ) y  <->  E. x  e.  B  x A
y )
109abbii 2323 . 2  |-  { y  |  E. x  x ( A  |`  B ) y }  =  {
y  |  E. x  e.  B  x A
y }
111, 2, 103eqtri 2232 1  |-  ( A
" B )  =  { y  |  E. x  e.  B  x A y }
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1373   E.wex 1516    e. wcel 2178   {cab 2193   E.wrex 2487   class class class wbr 4059   ran crn 4694    |` cres 4695   "cima 4696
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-br 4060  df-opab 4122  df-xp 4699  df-cnv 4701  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706
This theorem is referenced by:  dfima3  5044  elimag  5045  imasng  5066  imadiflem  5372  imadif  5373  imainlem  5374  imain  5375  funimaexglem  5376  dfimafn  5650  isoini  5910
  Copyright terms: Public domain W3C validator