ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfima2 Unicode version

Theorem dfima2 5024
Description: Alternate definition of image. Compare definition (d) of [Enderton] p. 44. (Contributed by NM, 19-Apr-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
dfima2  |-  ( A
" B )  =  { y  |  E. x  e.  B  x A y }
Distinct variable groups:    x, y, A   
x, B, y

Proof of Theorem dfima2
StepHypRef Expression
1 df-ima 4688 . 2  |-  ( A
" B )  =  ran  ( A  |`  B )
2 dfrn2 4866 . 2  |-  ran  ( A  |`  B )  =  { y  |  E. x  x ( A  |`  B ) y }
3 vex 2775 . . . . . . 7  |-  y  e. 
_V
43brres 4965 . . . . . 6  |-  ( x ( A  |`  B ) y  <->  ( x A y  /\  x  e.  B ) )
5 ancom 266 . . . . . 6  |-  ( ( x A y  /\  x  e.  B )  <->  ( x  e.  B  /\  x A y ) )
64, 5bitri 184 . . . . 5  |-  ( x ( A  |`  B ) y  <->  ( x  e.  B  /\  x A y ) )
76exbii 1628 . . . 4  |-  ( E. x  x ( A  |`  B ) y  <->  E. x
( x  e.  B  /\  x A y ) )
8 df-rex 2490 . . . 4  |-  ( E. x  e.  B  x A y  <->  E. x
( x  e.  B  /\  x A y ) )
97, 8bitr4i 187 . . 3  |-  ( E. x  x ( A  |`  B ) y  <->  E. x  e.  B  x A
y )
109abbii 2321 . 2  |-  { y  |  E. x  x ( A  |`  B ) y }  =  {
y  |  E. x  e.  B  x A
y }
111, 2, 103eqtri 2230 1  |-  ( A
" B )  =  { y  |  E. x  e.  B  x A y }
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1373   E.wex 1515    e. wcel 2176   {cab 2191   E.wrex 2485   class class class wbr 4044   ran crn 4676    |` cres 4677   "cima 4678
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-br 4045  df-opab 4106  df-xp 4681  df-cnv 4683  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688
This theorem is referenced by:  dfima3  5025  elimag  5026  imasng  5047  imadiflem  5353  imadif  5354  imainlem  5355  imain  5356  funimaexglem  5357  dfimafn  5627  isoini  5887
  Copyright terms: Public domain W3C validator