ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfima2 Unicode version

Theorem dfima2 5008
Description: Alternate definition of image. Compare definition (d) of [Enderton] p. 44. (Contributed by NM, 19-Apr-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
dfima2  |-  ( A
" B )  =  { y  |  E. x  e.  B  x A y }
Distinct variable groups:    x, y, A   
x, B, y

Proof of Theorem dfima2
StepHypRef Expression
1 df-ima 4673 . 2  |-  ( A
" B )  =  ran  ( A  |`  B )
2 dfrn2 4851 . 2  |-  ran  ( A  |`  B )  =  { y  |  E. x  x ( A  |`  B ) y }
3 vex 2763 . . . . . . 7  |-  y  e. 
_V
43brres 4949 . . . . . 6  |-  ( x ( A  |`  B ) y  <->  ( x A y  /\  x  e.  B ) )
5 ancom 266 . . . . . 6  |-  ( ( x A y  /\  x  e.  B )  <->  ( x  e.  B  /\  x A y ) )
64, 5bitri 184 . . . . 5  |-  ( x ( A  |`  B ) y  <->  ( x  e.  B  /\  x A y ) )
76exbii 1616 . . . 4  |-  ( E. x  x ( A  |`  B ) y  <->  E. x
( x  e.  B  /\  x A y ) )
8 df-rex 2478 . . . 4  |-  ( E. x  e.  B  x A y  <->  E. x
( x  e.  B  /\  x A y ) )
97, 8bitr4i 187 . . 3  |-  ( E. x  x ( A  |`  B ) y  <->  E. x  e.  B  x A
y )
109abbii 2309 . 2  |-  { y  |  E. x  x ( A  |`  B ) y }  =  {
y  |  E. x  e.  B  x A
y }
111, 2, 103eqtri 2218 1  |-  ( A
" B )  =  { y  |  E. x  e.  B  x A y }
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1364   E.wex 1503    e. wcel 2164   {cab 2179   E.wrex 2473   class class class wbr 4030   ran crn 4661    |` cres 4662   "cima 4663
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-br 4031  df-opab 4092  df-xp 4666  df-cnv 4668  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673
This theorem is referenced by:  dfima3  5009  elimag  5010  imasng  5031  imadiflem  5334  imadif  5335  imainlem  5336  imain  5337  funimaexglem  5338  dfimafn  5606  isoini  5862
  Copyright terms: Public domain W3C validator