| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > imain | Unicode version | ||
| Description: The image of an intersection is the intersection of images. (Contributed by Paul Chapman, 11-Apr-2009.) | 
| Ref | Expression | 
|---|---|
| imain | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | imainlem 5339 | 
. . 3
 | |
| 2 | 1 | a1i 9 | 
. 2
 | 
| 3 | eeanv 1951 | 
. . . . . 6
 | |
| 4 | simprll 537 | 
. . . . . . . . . . 11
 | |
| 5 | simpr 110 | 
. . . . . . . . . . . . . 14
 | |
| 6 | simpr 110 | 
. . . . . . . . . . . . . 14
 | |
| 7 | 5, 6 | anim12i 338 | 
. . . . . . . . . . . . 13
 | 
| 8 | funcnveq 5321 | 
. . . . . . . . . . . . . . . . 17
 | |
| 9 | 8 | biimpi 120 | 
. . . . . . . . . . . . . . . 16
 | 
| 10 | 9 | 19.21bi 1572 | 
. . . . . . . . . . . . . . 15
 | 
| 11 | 10 | 19.21bbi 1573 | 
. . . . . . . . . . . . . 14
 | 
| 12 | 11 | imp 124 | 
. . . . . . . . . . . . 13
 | 
| 13 | 7, 12 | sylan2 286 | 
. . . . . . . . . . . 12
 | 
| 14 | simprrl 539 | 
. . . . . . . . . . . 12
 | |
| 15 | 13, 14 | eqeltrd 2273 | 
. . . . . . . . . . 11
 | 
| 16 | elin 3346 | 
. . . . . . . . . . 11
 | |
| 17 | 4, 15, 16 | sylanbrc 417 | 
. . . . . . . . . 10
 | 
| 18 | simprlr 538 | 
. . . . . . . . . 10
 | |
| 19 | 17, 18 | jca 306 | 
. . . . . . . . 9
 | 
| 20 | 19 | ex 115 | 
. . . . . . . 8
 | 
| 21 | 20 | exlimdv 1833 | 
. . . . . . 7
 | 
| 22 | 21 | eximdv 1894 | 
. . . . . 6
 | 
| 23 | 3, 22 | biimtrrid 153 | 
. . . . 5
 | 
| 24 | df-rex 2481 | 
. . . . . 6
 | |
| 25 | df-rex 2481 | 
. . . . . 6
 | |
| 26 | 24, 25 | anbi12i 460 | 
. . . . 5
 | 
| 27 | df-rex 2481 | 
. . . . 5
 | |
| 28 | 23, 26, 27 | 3imtr4g 205 | 
. . . 4
 | 
| 29 | 28 | ss2abdv 3256 | 
. . 3
 | 
| 30 | dfima2 5011 | 
. . . . 5
 | |
| 31 | dfima2 5011 | 
. . . . 5
 | |
| 32 | 30, 31 | ineq12i 3362 | 
. . . 4
 | 
| 33 | inab 3431 | 
. . . 4
 | |
| 34 | 32, 33 | eqtri 2217 | 
. . 3
 | 
| 35 | dfima2 5011 | 
. . 3
 | |
| 36 | 29, 34, 35 | 3sstr4g 3226 | 
. 2
 | 
| 37 | 2, 36 | eqssd 3200 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-br 4034 df-opab 4095 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-fun 5260 | 
| This theorem is referenced by: inpreima 5688 | 
| Copyright terms: Public domain | W3C validator |