Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > imain | Unicode version |
Description: The image of an intersection is the intersection of images. (Contributed by Paul Chapman, 11-Apr-2009.) |
Ref | Expression |
---|---|
imain |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imainlem 5269 | . . 3 | |
2 | 1 | a1i 9 | . 2 |
3 | eeanv 1920 | . . . . . 6 | |
4 | simprll 527 | . . . . . . . . . . 11 | |
5 | simpr 109 | . . . . . . . . . . . . . 14 | |
6 | simpr 109 | . . . . . . . . . . . . . 14 | |
7 | 5, 6 | anim12i 336 | . . . . . . . . . . . . 13 |
8 | funcnveq 5251 | . . . . . . . . . . . . . . . . 17 | |
9 | 8 | biimpi 119 | . . . . . . . . . . . . . . . 16 |
10 | 9 | 19.21bi 1546 | . . . . . . . . . . . . . . 15 |
11 | 10 | 19.21bbi 1547 | . . . . . . . . . . . . . 14 |
12 | 11 | imp 123 | . . . . . . . . . . . . 13 |
13 | 7, 12 | sylan2 284 | . . . . . . . . . . . 12 |
14 | simprrl 529 | . . . . . . . . . . . 12 | |
15 | 13, 14 | eqeltrd 2243 | . . . . . . . . . . 11 |
16 | elin 3305 | . . . . . . . . . . 11 | |
17 | 4, 15, 16 | sylanbrc 414 | . . . . . . . . . 10 |
18 | simprlr 528 | . . . . . . . . . 10 | |
19 | 17, 18 | jca 304 | . . . . . . . . 9 |
20 | 19 | ex 114 | . . . . . . . 8 |
21 | 20 | exlimdv 1807 | . . . . . . 7 |
22 | 21 | eximdv 1868 | . . . . . 6 |
23 | 3, 22 | syl5bir 152 | . . . . 5 |
24 | df-rex 2450 | . . . . . 6 | |
25 | df-rex 2450 | . . . . . 6 | |
26 | 24, 25 | anbi12i 456 | . . . . 5 |
27 | df-rex 2450 | . . . . 5 | |
28 | 23, 26, 27 | 3imtr4g 204 | . . . 4 |
29 | 28 | ss2abdv 3215 | . . 3 |
30 | dfima2 4948 | . . . . 5 | |
31 | dfima2 4948 | . . . . 5 | |
32 | 30, 31 | ineq12i 3321 | . . . 4 |
33 | inab 3390 | . . . 4 | |
34 | 32, 33 | eqtri 2186 | . . 3 |
35 | dfima2 4948 | . . 3 | |
36 | 29, 34, 35 | 3sstr4g 3185 | . 2 |
37 | 2, 36 | eqssd 3159 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wal 1341 wceq 1343 wex 1480 wcel 2136 cab 2151 wrex 2445 cin 3115 wss 3116 class class class wbr 3982 ccnv 4603 cima 4607 wfun 5182 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 df-opab 4044 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-fun 5190 |
This theorem is referenced by: inpreima 5611 |
Copyright terms: Public domain | W3C validator |