| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > imain | Unicode version | ||
| Description: The image of an intersection is the intersection of images. (Contributed by Paul Chapman, 11-Apr-2009.) |
| Ref | Expression |
|---|---|
| imain |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imainlem 5402 |
. . 3
| |
| 2 | 1 | a1i 9 |
. 2
|
| 3 | eeanv 1983 |
. . . . . 6
| |
| 4 | simprll 537 |
. . . . . . . . . . 11
| |
| 5 | simpr 110 |
. . . . . . . . . . . . . 14
| |
| 6 | simpr 110 |
. . . . . . . . . . . . . 14
| |
| 7 | 5, 6 | anim12i 338 |
. . . . . . . . . . . . 13
|
| 8 | funcnveq 5384 |
. . . . . . . . . . . . . . . . 17
| |
| 9 | 8 | biimpi 120 |
. . . . . . . . . . . . . . . 16
|
| 10 | 9 | 19.21bi 1604 |
. . . . . . . . . . . . . . 15
|
| 11 | 10 | 19.21bbi 1605 |
. . . . . . . . . . . . . 14
|
| 12 | 11 | imp 124 |
. . . . . . . . . . . . 13
|
| 13 | 7, 12 | sylan2 286 |
. . . . . . . . . . . 12
|
| 14 | simprrl 539 |
. . . . . . . . . . . 12
| |
| 15 | 13, 14 | eqeltrd 2306 |
. . . . . . . . . . 11
|
| 16 | elin 3387 |
. . . . . . . . . . 11
| |
| 17 | 4, 15, 16 | sylanbrc 417 |
. . . . . . . . . 10
|
| 18 | simprlr 538 |
. . . . . . . . . 10
| |
| 19 | 17, 18 | jca 306 |
. . . . . . . . 9
|
| 20 | 19 | ex 115 |
. . . . . . . 8
|
| 21 | 20 | exlimdv 1865 |
. . . . . . 7
|
| 22 | 21 | eximdv 1926 |
. . . . . 6
|
| 23 | 3, 22 | biimtrrid 153 |
. . . . 5
|
| 24 | df-rex 2514 |
. . . . . 6
| |
| 25 | df-rex 2514 |
. . . . . 6
| |
| 26 | 24, 25 | anbi12i 460 |
. . . . 5
|
| 27 | df-rex 2514 |
. . . . 5
| |
| 28 | 23, 26, 27 | 3imtr4g 205 |
. . . 4
|
| 29 | 28 | ss2abdv 3297 |
. . 3
|
| 30 | dfima2 5070 |
. . . . 5
| |
| 31 | dfima2 5070 |
. . . . 5
| |
| 32 | 30, 31 | ineq12i 3403 |
. . . 4
|
| 33 | inab 3472 |
. . . 4
| |
| 34 | 32, 33 | eqtri 2250 |
. . 3
|
| 35 | dfima2 5070 |
. . 3
| |
| 36 | 29, 34, 35 | 3sstr4g 3267 |
. 2
|
| 37 | 2, 36 | eqssd 3241 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-br 4084 df-opab 4146 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-fun 5320 |
| This theorem is referenced by: inpreima 5761 |
| Copyright terms: Public domain | W3C validator |