| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > imain | Unicode version | ||
| Description: The image of an intersection is the intersection of images. (Contributed by Paul Chapman, 11-Apr-2009.) |
| Ref | Expression |
|---|---|
| imain |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imainlem 5355 |
. . 3
| |
| 2 | 1 | a1i 9 |
. 2
|
| 3 | eeanv 1960 |
. . . . . 6
| |
| 4 | simprll 537 |
. . . . . . . . . . 11
| |
| 5 | simpr 110 |
. . . . . . . . . . . . . 14
| |
| 6 | simpr 110 |
. . . . . . . . . . . . . 14
| |
| 7 | 5, 6 | anim12i 338 |
. . . . . . . . . . . . 13
|
| 8 | funcnveq 5337 |
. . . . . . . . . . . . . . . . 17
| |
| 9 | 8 | biimpi 120 |
. . . . . . . . . . . . . . . 16
|
| 10 | 9 | 19.21bi 1581 |
. . . . . . . . . . . . . . 15
|
| 11 | 10 | 19.21bbi 1582 |
. . . . . . . . . . . . . 14
|
| 12 | 11 | imp 124 |
. . . . . . . . . . . . 13
|
| 13 | 7, 12 | sylan2 286 |
. . . . . . . . . . . 12
|
| 14 | simprrl 539 |
. . . . . . . . . . . 12
| |
| 15 | 13, 14 | eqeltrd 2282 |
. . . . . . . . . . 11
|
| 16 | elin 3356 |
. . . . . . . . . . 11
| |
| 17 | 4, 15, 16 | sylanbrc 417 |
. . . . . . . . . 10
|
| 18 | simprlr 538 |
. . . . . . . . . 10
| |
| 19 | 17, 18 | jca 306 |
. . . . . . . . 9
|
| 20 | 19 | ex 115 |
. . . . . . . 8
|
| 21 | 20 | exlimdv 1842 |
. . . . . . 7
|
| 22 | 21 | eximdv 1903 |
. . . . . 6
|
| 23 | 3, 22 | biimtrrid 153 |
. . . . 5
|
| 24 | df-rex 2490 |
. . . . . 6
| |
| 25 | df-rex 2490 |
. . . . . 6
| |
| 26 | 24, 25 | anbi12i 460 |
. . . . 5
|
| 27 | df-rex 2490 |
. . . . 5
| |
| 28 | 23, 26, 27 | 3imtr4g 205 |
. . . 4
|
| 29 | 28 | ss2abdv 3266 |
. . 3
|
| 30 | dfima2 5024 |
. . . . 5
| |
| 31 | dfima2 5024 |
. . . . 5
| |
| 32 | 30, 31 | ineq12i 3372 |
. . . 4
|
| 33 | inab 3441 |
. . . 4
| |
| 34 | 32, 33 | eqtri 2226 |
. . 3
|
| 35 | dfima2 5024 |
. . 3
| |
| 36 | 29, 34, 35 | 3sstr4g 3236 |
. 2
|
| 37 | 2, 36 | eqssd 3210 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-br 4045 df-opab 4106 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-fun 5273 |
| This theorem is referenced by: inpreima 5706 |
| Copyright terms: Public domain | W3C validator |