Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > inab | GIF version |
Description: Intersection of two class abstractions. (Contributed by NM, 29-Sep-2002.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
inab | ⊢ ({𝑥 ∣ 𝜑} ∩ {𝑥 ∣ 𝜓}) = {𝑥 ∣ (𝜑 ∧ 𝜓)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sban 1948 | . . 3 ⊢ ([𝑦 / 𝑥](𝜑 ∧ 𝜓) ↔ ([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓)) | |
2 | df-clab 2157 | . . 3 ⊢ (𝑦 ∈ {𝑥 ∣ (𝜑 ∧ 𝜓)} ↔ [𝑦 / 𝑥](𝜑 ∧ 𝜓)) | |
3 | df-clab 2157 | . . . 4 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ [𝑦 / 𝑥]𝜑) | |
4 | df-clab 2157 | . . . 4 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜓} ↔ [𝑦 / 𝑥]𝜓) | |
5 | 3, 4 | anbi12i 457 | . . 3 ⊢ ((𝑦 ∈ {𝑥 ∣ 𝜑} ∧ 𝑦 ∈ {𝑥 ∣ 𝜓}) ↔ ([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓)) |
6 | 1, 2, 5 | 3bitr4ri 212 | . 2 ⊢ ((𝑦 ∈ {𝑥 ∣ 𝜑} ∧ 𝑦 ∈ {𝑥 ∣ 𝜓}) ↔ 𝑦 ∈ {𝑥 ∣ (𝜑 ∧ 𝜓)}) |
7 | 6 | ineqri 3320 | 1 ⊢ ({𝑥 ∣ 𝜑} ∩ {𝑥 ∣ 𝜓}) = {𝑥 ∣ (𝜑 ∧ 𝜓)} |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 = wceq 1348 [wsb 1755 ∈ wcel 2141 {cab 2156 ∩ cin 3120 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-in 3127 |
This theorem is referenced by: inrab 3399 inrab2 3400 dfrab2 3402 dfrab3 3403 imainlem 5279 imain 5280 ssenen 6829 |
Copyright terms: Public domain | W3C validator |