| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > inab | GIF version | ||
| Description: Intersection of two class abstractions. (Contributed by NM, 29-Sep-2002.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| Ref | Expression |
|---|---|
| inab | ⊢ ({𝑥 ∣ 𝜑} ∩ {𝑥 ∣ 𝜓}) = {𝑥 ∣ (𝜑 ∧ 𝜓)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sban 2006 | . . 3 ⊢ ([𝑦 / 𝑥](𝜑 ∧ 𝜓) ↔ ([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓)) | |
| 2 | df-clab 2216 | . . 3 ⊢ (𝑦 ∈ {𝑥 ∣ (𝜑 ∧ 𝜓)} ↔ [𝑦 / 𝑥](𝜑 ∧ 𝜓)) | |
| 3 | df-clab 2216 | . . . 4 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ [𝑦 / 𝑥]𝜑) | |
| 4 | df-clab 2216 | . . . 4 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜓} ↔ [𝑦 / 𝑥]𝜓) | |
| 5 | 3, 4 | anbi12i 460 | . . 3 ⊢ ((𝑦 ∈ {𝑥 ∣ 𝜑} ∧ 𝑦 ∈ {𝑥 ∣ 𝜓}) ↔ ([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓)) |
| 6 | 1, 2, 5 | 3bitr4ri 213 | . 2 ⊢ ((𝑦 ∈ {𝑥 ∣ 𝜑} ∧ 𝑦 ∈ {𝑥 ∣ 𝜓}) ↔ 𝑦 ∈ {𝑥 ∣ (𝜑 ∧ 𝜓)}) |
| 7 | 6 | ineqri 3397 | 1 ⊢ ({𝑥 ∣ 𝜑} ∩ {𝑥 ∣ 𝜓}) = {𝑥 ∣ (𝜑 ∧ 𝜓)} |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 = wceq 1395 [wsb 1808 ∈ wcel 2200 {cab 2215 ∩ cin 3196 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-in 3203 |
| This theorem is referenced by: inrab 3476 inrab2 3477 dfrab2 3479 dfrab3 3480 imainlem 5402 imain 5403 ssenen 7020 |
| Copyright terms: Public domain | W3C validator |