Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > intssuni2m | GIF version |
Description: Subclass relationship for intersection and union. (Contributed by Jim Kingdon, 14-Aug-2018.) |
Ref | Expression |
---|---|
intssuni2m | ⊢ ((𝐴 ⊆ 𝐵 ∧ ∃𝑥 𝑥 ∈ 𝐴) → ∩ 𝐴 ⊆ ∪ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | intssunim 3862 | . 2 ⊢ (∃𝑥 𝑥 ∈ 𝐴 → ∩ 𝐴 ⊆ ∪ 𝐴) | |
2 | uniss 3826 | . 2 ⊢ (𝐴 ⊆ 𝐵 → ∪ 𝐴 ⊆ ∪ 𝐵) | |
3 | 1, 2 | sylan9ssr 3167 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ ∃𝑥 𝑥 ∈ 𝐴) → ∩ 𝐴 ⊆ ∪ 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∃wex 1490 ∈ wcel 2146 ⊆ wss 3127 ∪ cuni 3805 ∩ cint 3840 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-v 2737 df-in 3133 df-ss 3140 df-uni 3806 df-int 3841 |
This theorem is referenced by: rintm 3974 onintonm 4510 fival 6959 fiuni 6967 |
Copyright terms: Public domain | W3C validator |