ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  intssuni2m GIF version

Theorem intssuni2m 3898
Description: Subclass relationship for intersection and union. (Contributed by Jim Kingdon, 14-Aug-2018.)
Assertion
Ref Expression
intssuni2m ((𝐴𝐵 ∧ ∃𝑥 𝑥𝐴) → 𝐴 𝐵)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem intssuni2m
StepHypRef Expression
1 intssunim 3896 . 2 (∃𝑥 𝑥𝐴 𝐴 𝐴)
2 uniss 3860 . 2 (𝐴𝐵 𝐴 𝐵)
31, 2sylan9ssr 3197 1 ((𝐴𝐵 ∧ ∃𝑥 𝑥𝐴) → 𝐴 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wex 1506  wcel 2167  wss 3157   cuni 3839   cint 3874
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-in 3163  df-ss 3170  df-uni 3840  df-int 3875
This theorem is referenced by:  rintm  4009  onintonm  4553  fival  7036  fiuni  7044  lssintclm  13940
  Copyright terms: Public domain W3C validator