ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  intssuni2m GIF version

Theorem intssuni2m 3894
Description: Subclass relationship for intersection and union. (Contributed by Jim Kingdon, 14-Aug-2018.)
Assertion
Ref Expression
intssuni2m ((𝐴𝐵 ∧ ∃𝑥 𝑥𝐴) → 𝐴 𝐵)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem intssuni2m
StepHypRef Expression
1 intssunim 3892 . 2 (∃𝑥 𝑥𝐴 𝐴 𝐴)
2 uniss 3856 . 2 (𝐴𝐵 𝐴 𝐵)
31, 2sylan9ssr 3193 1 ((𝐴𝐵 ∧ ∃𝑥 𝑥𝐴) → 𝐴 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wex 1503  wcel 2164  wss 3153   cuni 3835   cint 3870
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-in 3159  df-ss 3166  df-uni 3836  df-int 3871
This theorem is referenced by:  rintm  4005  onintonm  4549  fival  7029  fiuni  7037  lssintclm  13880
  Copyright terms: Public domain W3C validator