ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  intssuni2m GIF version

Theorem intssuni2m 3911
Description: Subclass relationship for intersection and union. (Contributed by Jim Kingdon, 14-Aug-2018.)
Assertion
Ref Expression
intssuni2m ((𝐴𝐵 ∧ ∃𝑥 𝑥𝐴) → 𝐴 𝐵)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem intssuni2m
StepHypRef Expression
1 intssunim 3909 . 2 (∃𝑥 𝑥𝐴 𝐴 𝐴)
2 uniss 3873 . 2 (𝐴𝐵 𝐴 𝐵)
31, 2sylan9ssr 3208 1 ((𝐴𝐵 ∧ ∃𝑥 𝑥𝐴) → 𝐴 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wex 1516  wcel 2177  wss 3167   cuni 3852   cint 3887
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-in 3173  df-ss 3180  df-uni 3853  df-int 3888
This theorem is referenced by:  rintm  4022  onintonm  4569  fival  7079  fiuni  7087  lssintclm  14190
  Copyright terms: Public domain W3C validator