ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmresv Unicode version

Theorem dmresv 5187
Description: The domain of a universal restriction. (Contributed by NM, 14-May-2008.)
Assertion
Ref Expression
dmresv  |-  dom  ( A  |`  _V )  =  dom  A

Proof of Theorem dmresv
StepHypRef Expression
1 dmres 5026 . 2  |-  dom  ( A  |`  _V )  =  ( _V  i^i  dom  A )
2 incom 3396 . 2  |-  ( _V 
i^i  dom  A )  =  ( dom  A  i^i  _V )
3 inv1 3528 . 2  |-  ( dom 
A  i^i  _V )  =  dom  A
41, 2, 33eqtri 2254 1  |-  dom  ( A  |`  _V )  =  dom  A
Colors of variables: wff set class
Syntax hints:    = wceq 1395   _Vcvv 2799    i^i cin 3196   dom cdm 4719    |` cres 4721
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4084  df-opab 4146  df-xp 4725  df-dm 4729  df-res 4731
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator