ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpima2m Unicode version

Theorem xpima2m 5077
Description: The image by a cross product. (Contributed by Thierry Arnoux, 16-Dec-2017.)
Assertion
Ref Expression
xpima2m  |-  ( E. x  x  e.  ( A  i^i  C )  ->  ( ( A  X.  B ) " C )  =  B )
Distinct variable groups:    x, A    x, C
Allowed substitution hint:    B( x)

Proof of Theorem xpima2m
StepHypRef Expression
1 df-ima 4640 . . . 4  |-  ( ( A  X.  B )
" C )  =  ran  ( ( A  X.  B )  |`  C )
2 df-res 4639 . . . . 5  |-  ( ( A  X.  B )  |`  C )  =  ( ( A  X.  B
)  i^i  ( C  X.  _V ) )
32rneqi 4856 . . . 4  |-  ran  (
( A  X.  B
)  |`  C )  =  ran  ( ( A  X.  B )  i^i  ( C  X.  _V ) )
4 inxp 4762 . . . . 5  |-  ( ( A  X.  B )  i^i  ( C  X.  _V ) )  =  ( ( A  i^i  C
)  X.  ( B  i^i  _V ) )
54rneqi 4856 . . . 4  |-  ran  (
( A  X.  B
)  i^i  ( C  X.  _V ) )  =  ran  ( ( A  i^i  C )  X.  ( B  i^i  _V ) )
61, 3, 53eqtri 2202 . . 3  |-  ( ( A  X.  B )
" C )  =  ran  ( ( A  i^i  C )  X.  ( B  i^i  _V ) )
7 rnxpm 5059 . . 3  |-  ( E. x  x  e.  ( A  i^i  C )  ->  ran  ( ( A  i^i  C )  X.  ( B  i^i  _V ) )  =  ( B  i^i  _V )
)
86, 7eqtrid 2222 . 2  |-  ( E. x  x  e.  ( A  i^i  C )  ->  ( ( A  X.  B ) " C )  =  ( B  i^i  _V )
)
9 inv1 3460 . 2  |-  ( B  i^i  _V )  =  B
108, 9eqtrdi 2226 1  |-  ( E. x  x  e.  ( A  i^i  C )  ->  ( ( A  X.  B ) " C )  =  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1353   E.wex 1492    e. wcel 2148   _Vcvv 2738    i^i cin 3129    X. cxp 4625   ran crn 4628    |` cres 4629   "cima 4630
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-pow 4175  ax-pr 4210
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2740  df-un 3134  df-in 3136  df-ss 3143  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-br 4005  df-opab 4066  df-xp 4633  df-rel 4634  df-cnv 4635  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640
This theorem is referenced by:  xpimasn  5078
  Copyright terms: Public domain W3C validator