ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpima2m Unicode version

Theorem xpima2m 5176
Description: The image by a cross product. (Contributed by Thierry Arnoux, 16-Dec-2017.)
Assertion
Ref Expression
xpima2m  |-  ( E. x  x  e.  ( A  i^i  C )  ->  ( ( A  X.  B ) " C )  =  B )
Distinct variable groups:    x, A    x, C
Allowed substitution hint:    B( x)

Proof of Theorem xpima2m
StepHypRef Expression
1 df-ima 4732 . . . 4  |-  ( ( A  X.  B )
" C )  =  ran  ( ( A  X.  B )  |`  C )
2 df-res 4731 . . . . 5  |-  ( ( A  X.  B )  |`  C )  =  ( ( A  X.  B
)  i^i  ( C  X.  _V ) )
32rneqi 4952 . . . 4  |-  ran  (
( A  X.  B
)  |`  C )  =  ran  ( ( A  X.  B )  i^i  ( C  X.  _V ) )
4 inxp 4856 . . . . 5  |-  ( ( A  X.  B )  i^i  ( C  X.  _V ) )  =  ( ( A  i^i  C
)  X.  ( B  i^i  _V ) )
54rneqi 4952 . . . 4  |-  ran  (
( A  X.  B
)  i^i  ( C  X.  _V ) )  =  ran  ( ( A  i^i  C )  X.  ( B  i^i  _V ) )
61, 3, 53eqtri 2254 . . 3  |-  ( ( A  X.  B )
" C )  =  ran  ( ( A  i^i  C )  X.  ( B  i^i  _V ) )
7 rnxpm 5158 . . 3  |-  ( E. x  x  e.  ( A  i^i  C )  ->  ran  ( ( A  i^i  C )  X.  ( B  i^i  _V ) )  =  ( B  i^i  _V )
)
86, 7eqtrid 2274 . 2  |-  ( E. x  x  e.  ( A  i^i  C )  ->  ( ( A  X.  B ) " C )  =  ( B  i^i  _V )
)
9 inv1 3528 . 2  |-  ( B  i^i  _V )  =  B
108, 9eqtrdi 2278 1  |-  ( E. x  x  e.  ( A  i^i  C )  ->  ( ( A  X.  B ) " C )  =  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1395   E.wex 1538    e. wcel 2200   _Vcvv 2799    i^i cin 3196    X. cxp 4717   ran crn 4720    |` cres 4721   "cima 4722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4084  df-opab 4146  df-xp 4725  df-rel 4726  df-cnv 4727  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732
This theorem is referenced by:  xpimasn  5177
  Copyright terms: Public domain W3C validator