ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpima2m Unicode version

Theorem xpima2m 5051
Description: The image by a cross product. (Contributed by Thierry Arnoux, 16-Dec-2017.)
Assertion
Ref Expression
xpima2m  |-  ( E. x  x  e.  ( A  i^i  C )  ->  ( ( A  X.  B ) " C )  =  B )
Distinct variable groups:    x, A    x, C
Allowed substitution hint:    B( x)

Proof of Theorem xpima2m
StepHypRef Expression
1 df-ima 4617 . . . 4  |-  ( ( A  X.  B )
" C )  =  ran  ( ( A  X.  B )  |`  C )
2 df-res 4616 . . . . 5  |-  ( ( A  X.  B )  |`  C )  =  ( ( A  X.  B
)  i^i  ( C  X.  _V ) )
32rneqi 4832 . . . 4  |-  ran  (
( A  X.  B
)  |`  C )  =  ran  ( ( A  X.  B )  i^i  ( C  X.  _V ) )
4 inxp 4738 . . . . 5  |-  ( ( A  X.  B )  i^i  ( C  X.  _V ) )  =  ( ( A  i^i  C
)  X.  ( B  i^i  _V ) )
54rneqi 4832 . . . 4  |-  ran  (
( A  X.  B
)  i^i  ( C  X.  _V ) )  =  ran  ( ( A  i^i  C )  X.  ( B  i^i  _V ) )
61, 3, 53eqtri 2190 . . 3  |-  ( ( A  X.  B )
" C )  =  ran  ( ( A  i^i  C )  X.  ( B  i^i  _V ) )
7 rnxpm 5033 . . 3  |-  ( E. x  x  e.  ( A  i^i  C )  ->  ran  ( ( A  i^i  C )  X.  ( B  i^i  _V ) )  =  ( B  i^i  _V )
)
86, 7syl5eq 2211 . 2  |-  ( E. x  x  e.  ( A  i^i  C )  ->  ( ( A  X.  B ) " C )  =  ( B  i^i  _V )
)
9 inv1 3445 . 2  |-  ( B  i^i  _V )  =  B
108, 9eqtrdi 2215 1  |-  ( E. x  x  e.  ( A  i^i  C )  ->  ( ( A  X.  B ) " C )  =  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1343   E.wex 1480    e. wcel 2136   _Vcvv 2726    i^i cin 3115    X. cxp 4602   ran crn 4605    |` cres 4606   "cima 4607
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-xp 4610  df-rel 4611  df-cnv 4612  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617
This theorem is referenced by:  xpimasn  5052
  Copyright terms: Public domain W3C validator