ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iota5 GIF version

Theorem iota5 5200
Description: A method for computing iota. (Contributed by NM, 17-Sep-2013.)
Hypothesis
Ref Expression
iota5.1 ((𝜑𝐴𝑉) → (𝜓𝑥 = 𝐴))
Assertion
Ref Expression
iota5 ((𝜑𝐴𝑉) → (℩𝑥𝜓) = 𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑉   𝜑,𝑥
Allowed substitution hint:   𝜓(𝑥)

Proof of Theorem iota5
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 iota5.1 . . 3 ((𝜑𝐴𝑉) → (𝜓𝑥 = 𝐴))
21alrimiv 1874 . 2 ((𝜑𝐴𝑉) → ∀𝑥(𝜓𝑥 = 𝐴))
3 eqeq2 2187 . . . . . . 7 (𝑦 = 𝐴 → (𝑥 = 𝑦𝑥 = 𝐴))
43bibi2d 232 . . . . . 6 (𝑦 = 𝐴 → ((𝜓𝑥 = 𝑦) ↔ (𝜓𝑥 = 𝐴)))
54albidv 1824 . . . . 5 (𝑦 = 𝐴 → (∀𝑥(𝜓𝑥 = 𝑦) ↔ ∀𝑥(𝜓𝑥 = 𝐴)))
6 eqeq2 2187 . . . . 5 (𝑦 = 𝐴 → ((℩𝑥𝜓) = 𝑦 ↔ (℩𝑥𝜓) = 𝐴))
75, 6imbi12d 234 . . . 4 (𝑦 = 𝐴 → ((∀𝑥(𝜓𝑥 = 𝑦) → (℩𝑥𝜓) = 𝑦) ↔ (∀𝑥(𝜓𝑥 = 𝐴) → (℩𝑥𝜓) = 𝐴)))
8 iotaval 5191 . . . 4 (∀𝑥(𝜓𝑥 = 𝑦) → (℩𝑥𝜓) = 𝑦)
97, 8vtoclg 2799 . . 3 (𝐴𝑉 → (∀𝑥(𝜓𝑥 = 𝐴) → (℩𝑥𝜓) = 𝐴))
109adantl 277 . 2 ((𝜑𝐴𝑉) → (∀𝑥(𝜓𝑥 = 𝐴) → (℩𝑥𝜓) = 𝐴))
112, 10mpd 13 1 ((𝜑𝐴𝑉) → (℩𝑥𝜓) = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wal 1351   = wceq 1353  wcel 2148  cio 5178
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-rex 2461  df-v 2741  df-sbc 2965  df-un 3135  df-sn 3600  df-pr 3601  df-uni 3812  df-iota 5180
This theorem is referenced by:  fsum3  11397  fprodseq  11593
  Copyright terms: Public domain W3C validator